
1

This document is the property of Carrier Corporation and is delivered on the express condition that it is not to be disclosed,
reproduced in whole or in part, or used for manufacture by anyone other than Carrier Corporation without its written consent, and
that no right is granted to disclose or so use any information contained in said document.

Carrier reserves the right to change or modify the information or product described without prior notice and without incurring any
liability.

© 2005, Carrier Corporation 808-893 Rev. 7/05

BEST++

Programmer's Reference
Manual

Introduction .. 1

The BEST++ Programmer's Environment 7

Creating an Application ... 25

Rules for Creating Names in BEST++ 31

Statements ... 35

Reserved Words, Logical Operators, and
Math Functions ... 43

Mathematical and Relational Operators 147

Symbols .. 161

Task Execution .. 171

Debugging System... 173

Syntax Error Messages and
Report Warnings .. 189

Appendix A — Comfort Controller
Force Priorities ... 197

Appendix B — Metric Units 198

Appendix C — Comparison of FID BEST and
BEST++ PE Commands ... 200

Appendix D — ComfortWORKS' Programmer's
Environment .. 201

Index .. 221

2

iii

Manual
Revisions

The BEST++ Programmer's Reference Manual is catalog number
808-893, Rev. 7/05. This manual replaces the preliminary BEST++

Programmer's Reference Manual, catalog number 808-893, Rev. 3/96.

Section/Chapter Changes

Reserved Words, Logical
Operators and Math
Functions

1. On Page 1, added the following note:

It is important to note that you cannot write to Comfort
Controller maintenance decisions. You can, however, read
from Comfort Controller maintenance decisions without
negative consequence.

Also added this note to the description of CONNECT on Page
61, under Internally Connecting to a Decision, and on Page 66
under Externally Connecting to a Function's Decision in a
Comfort Controller.

2. In Table 1, BEST++ Terms, revised the first sentence of the
description of the Decompile task so that it now reads:

To reverse compile a program and produce a BEST++ pro-
gram source file that you can view and edit.

3. Under File, revised the first sentence of the explanation of the
Save Folder As... command so that it now reads:

Use this command to save the open folder and all of the .BST
programs listed in the folder under a new name.

4. On Page 25, inserted new Paragraph 1, referring out to the
ComfortWORKS Programmer's Environment information
that is contained in Appendix D.

5. In the explanation of CONNECT, on page 58, under External
CONNECTs (CONNECTs to another controller on the same
CCN), under CONNECTing to a decision in a UT203 FID,
32MP Gateway, or VVT Gateway, modified the 32 MP GW
and VVT GW syntax so that they each now read:

32MP GW NETWORK_DECISION var (CCN_element#,
CCN_bus#, 0, table#, index#)

VVT GW NETWORK_DECISION var (CCN_element#,
CCN_bus#, 0, device, decision#)

Revised corresponding explanation under BEST++ Syntax on
bottom of Page 64.

Introduction

The BEST++
Programmer's
Environment

Creating an Application

iv

Changes
6. In the explanation of COUNTER, re-wrote the second para-

graph so that it now reads:

The maximum number to which a counter can count is
65,535. When the counter reaches this value, it automatically
resets to 0.

7. In the explanation of INPUTFROM on Page 97, revised the
description of status 2.

8. In the explanation of MAX and MIN, in the Syntax and
Examples, replaced all occurrences of the . (period) character
with the , character (comma).

9. In the explanation of ROUNDDOWN and ROUNDUP,
revised examples 1 and 2.

10. In the explanation of RUN, revised the interpretation so that it
now reads:

A task named CHILLER is activated at its first statement. If
the task is already active, execution continues and is not
affected. If the task is not active, execution begins from the
first statement of the task.

11. In the explanation of TASK, revised the third paragraph on
Page 138 so that it now reads:

reschpor is the amount of time that must elapse after a down-
load or Power On Reset (POR) occurs before the task will
repeat.

12. In the explanation of TIMER, revised the third paragraph so
that it now reads:

A timer can count up to 4,294,967,295 seconds and then
automatically resets to 9 and continues incrementing.

13. On Page 174, under Debug Dialog Box, revised the second
paragraph so that it now reads:

The left box displays a list of all local user names in the
program. Use the scroll bars to view names that do not fit in
the box.

Debugging System

Section/Chapter
Reserved Words, Logical
Operators and Math
Functions

v

Appendix A

Appendix D

Changes

14. On Page 197, revised the second paragraph so that it now
reads:

When BEST++ writes a value to an internal hardware of
software point, it will write the value as dictated by the
forcepri. When forcing variables over the CCN network, all
writes will cause BEST forces, regardless of the forcepri
setting.

15. Added this appendix, ComfortWORKS Programmer's Envi-
ronment.

Section/Chapter

vi

Introduction

1

Carrier’s Building Environmental Systems Translator (BEST++) is a
custom programming language that provides you with the ability to
supplement or enhance the Comfort Controller’s standard control
algorithms.

The Comfort Controller-resident algorithms provide the type of
control necessary for most applications. The purpose of BEST++ is to
allow you to further customize and extend the Comfort Controller’s
capabilities to meet any unique control requirements with little or no
additional hardware.

Notes: The BEST++ Programmer's Environment requires a mini-
mum of 550 Kbytes of memory to run successfully. Any
TSR (Terminate and Stay Resident) programs, such as
SMARTDRV, must be removed.

It is important to note that you cannot write to Comfort
Controller maintenance decisions. You can, however, read
from Comfort Controller maintenance decisions without
negative consequence.

Because it is derived from the English language and similar to
BASIC, BEST++ is easy to use.

Other BEST++ features that add to ease of use include:

• a programmer's environment that gives you the capability to select
commands from a menu bar, similar to the way you do in
Windows-based applications.

• a paste function that provides a foolproof way to insert reserved
word, logical and mathematical operator, and symbol syntax into
your program. This paste function also provides on-line help for
each reserved word, logical and mathematical operator, and
symbol.

• a full-screen text editor that gives you the capability to write new
or edit existing BEST++ programs.

• two debugging features — one that displays the current status and
values of variables for a specified BEST++ program, and another

Introduction

Operating
Characteristics

2

that allows access to all items in the connected controller, includ-
ing schedules, setpoints, and standard algorithms.

• a method to quickly compile and download all programs at one
time to the Comfort Controller.

• the ability to use local and global variables within BEST++
programs. Local variables are those defined in a program for use
only in that program. Global variables are those defined in the
global dictionary for use by all the BEST++ programs in the
same folder as the global dictionary.

The BEST++ Programmer’s Reference Manual should be used as a
reference tool when writing BEST++ programs for the Comfort
Controller.

Prior to using this manual, you should attend some formal BEST++
training.

Note: The examples presented in this manual are for illustrative
purposes only. They are not necessarily true applications of
the BEST++ programming language. Do not attempt to
implement them as shown. All examples are in customary
US engineering units.

This manual is divided into the following chapters:

Introduction
The BEST++ Programmer's Environment
Creating an Application
Rules for Creating Names in BEST++
Statements
Reserved Words, Logical Operators, and Math Functions
Mathematical and Relational Operators
Symbols
Task Execution
Debugging System
Syntax Error Messages and Report Warnings
Appendix A — Comfort Controller Force Priorities
Appendix B — Metric Units

Purpose of and
Prerequisites for
this Manual

Structure and
Content of this
Manual

3

Appendix C — Comparison of FID BEST and BEST++ PE Com-
mands

The Introduction contains the information contained here as well as
a description of the BEST++ custom programming language.

The BEST++ Programmer's Environment chapter provides the
following instructions:

• How to access the BEST++ Programmer's Environment and
select a command from the menu bar

The Creating an Application chapter provides the following step-by-
step instructions:

• How to create, compile, and download a new BEST++ program
• How to edit an existing BEST++ program

The Rules for Creating Names in BEST++ chapter lists the rules for
creating variable names and provides examples of valid and invalid
names.

The Statements chapter introduces you to a BEST++ statement and
provides rules for creating statements. This chapter also discusses
the benefits of indenting statements and inserting blank lines. This
chapter also includes BEST++ syntax rules.

The Reserved Words, Logical Operators, and Math Functions
chapter provides the following information for each BEST++ re-
served word, logical operator, and math function: description,
syntax, examples of usage, and usage rules. For easy reference, this
chapter is organized alphabetically.

The Mathematical and Relational Operators chapter provides the
following information for each BEST++ mathematical and relational
operator: description, syntax, examples of use, and usage rules. For
easy reference, the operators in this chapter are organized in order of
execution, with mathematical operators appearing before relational
operators.

The Symbols chapter provides the following information for each
BEST++ symbol: description, syntax, examples of use, and usage

4

rules. For easy reference, the symbols in this chapter are organized
according to their order of execution.

The Task Execution chapter discusses single BEST++ task execution,
multiple task execution, and BEST++ program interaction with Com-
fort Controller algorithms. This chapter also discusses the effect of
cycling Comfort Controller power during BEST++ task execution.

The Debugging System chapter describes the menu items within the
BEST++ Debugger and System Debugger.

The Syntax Error Messages and Report Warnings chapter lists each
error code along with its meaning.

Appendix A lists, in decreasing order, the priority of forces within a
Comfort Controller.

Appendix B provides instructions for specifying customary US or
metric engineering units.

Appendix C lists the FID BEST Programmer's Environment com-
mands and their comparable BEST++ Programmer's Environment
commands.

Appendix D provides information on the ComfortWORKS'
Programmer's Environment.

The following terms are used throughout this manual.

Term Description

Clipboard A temporary storage location used to transfer
data between places in a program. You place
data on the clipboard using the Cut or Copy
command, and you retrieve data from the clip-
board by using the Paste command. The clip-
board contains only the most recent cut or copied
text.

Comfort Controller A field installed device that is a solid-state,
microcontroller-based controller. It regulates
building equipment using closed-loop, direct
digital control.

(continued)

Table 1
BEST ++ Terms

Terminology

5

Term Description

Compile To translate BEST++ program syntax to
machine (microcontroller) language.

Debug To edit a program and correct any errors
detected during the compile process. Addition-
ally, the debugging feature enables you to
monitor program operation within the control-
ler to ensure the program is operating as
intended.

Decompile To reverse compile a program and produce a
BEST++ program source file that you can view
and edit. Additionally, the decompile process
allows you to verify that the compiled program
was correctly translated.

Folder A list of all BEST++ programs that reside in a
specific controller. There must be only one
folder per controller.

A folder allows all of the programs contained
in it to share one common dictionary (the
global dictionary) and gives you the capability
to compile and download all programs within a
folder at one time. For example, if a folder
contains the names of ten programs and you
want to compile and download all ten of them,
you could easily compile them all at once with
the Compile All command.

Global Dictionary The program where you specify point and
variable names, timers, counters, and arrays to
be used by the programs in a folder. These
names automatically become common to all
BEST++ programs listed in the same folder as
the global dictionary. You can add to the
dictionary as often as necessary.

(continued)

Table 1
BEST ++ Terms (continued)

6

Table 1
BEST ++ Terms (continued) Term Description

Note: You must initialize the Comfort
Controller after making a change to
the global dictionary. For information
on initializing, refer to the Debugging
System chapter in this manual.

When you create a new folder, BEST++ will
automatically create a .BST file with the same
name as the folder and insert the PROGRAM
statement with the description “Global Dictio-
nary.”

Note: You must keep the global dictionary
as the first program in the folder, and
you may not change its name.

Menu Bar A menu displayed across the top of a screen or
dialog box. To access the menu bar, press the
Alt key. Use the right or left arrow key to
highlight the desired menu item and press
Enter to display that menu item’s command
list. Use the up or down arrow key to select the
command.

The BEST++

Programmer's
Environment

7

This chapter provides the following information about BEST++
programs:

• General information
• File structure
• Writing
• Accessing the BEST++ Programmer’s Environment (PE) and

selecting a command from the menu bar

This chapter also describes each of the commands that appear in the
BEST++ menu bar.

You can choose menu items and commands in the Programmer’s
Environment using the mouse or the keyboard. The instructions in
this manual are written with the assumption that you are not using a
mouse, and details the keystrokes required to use BEST++ with a
keyboard.

Note: If you intend to use a mouse with the Network Service
Tool, you must ensure that you have loaded the mouse
driver software that was provided with the mouse.

You can use the mouse to move the cursor around the
screen and select menu bar items, commands in menus, or
text by clicking once on the left mouse button.

The BEST++
Programmer’s
Environment
About this
Chapter

8

The table below lists the Network Service Tool’s keys that you can
use to move around in BEST++. Keys that must be pressed at the
same time are separated with a plus sign (+).

Press To

Alt access the menu bar.

Ctrl + C copy highlighted text.
Ctrl + O open a program.
Ctrl + S save a program.
Ctrl + P print a list of all the programs specified

in a folder.
Ctrl + X cut highlighted text.
Ctrl + V paste highlighted text.

Enter select what is highlighted.

Esc close a menu or dialog box without
making a selection or saving changes.

Shift + Tab move to the previous text box, button,
or option in a dialog box.

Shift + arrow key highlight text you wish to edit.

Tab move to the next text box, button, or
option in a dialog box.

Up, Down Arrows move up and down in lists or to move
the cursor within a program.

Left, Right Arrows move between menu items on the menu
bar or to move the cursor within a
program.

F3 access the Find dialog box. Use this
dialog box to enter the text string to be
searched.

Shift + F3 access the Find and Change dialog box.

F8 Activate BEST++ Debug.

F9 Activate System Debug.

Using the
Keyboard

Table 2
Network Service Tool’s
BEST++ Keys

9

Where You Write
BEST++ Programs

You write, edit, compile, and debug BEST++ programs using the
BEST++ Programmer’s Environment. When you select the BEST++
function, you enter the Programmer’s Environment. A Comfort
Controller is not necessary to write programs or correct syntax errors
while in the Programmer's Environment.

After your programs are successfully compiled and debugged, you
download the program to the targeted Comfort Controller. The
program will execute and continue to run even if you exit the
Programmer’s Environment or disconnect from the Comfort Con-
troller.

Folders: A folder consists of a list of .BST files. These files in-
clude a global dictionary and associated local programs. The global
dictionary should contain CONNECT, TIMER, and ARRAY state-
ments. CONNECTs or other definitions in the global dictionary can
be accessed by all of the programs in the folder. Any CONNECTs
defined in the local programs cannot be seen by the global dictio-
nary or any other local program. They are strictly for use in the
program in which they are defined. You save all folders (.FLD file
extension) on the Network Service Tool’s hard drive in a directory
of your choice.

Programs: The programs contain your BEST++ code, which can be
downloaded to a Comfort Controller when compiled. BEST++
automatically saves the compiled program (.BPP file extension) in
the same directory as the source program. You do not have to save
all programs in the same directory as the folder. However, the
Global Dictionary must be in the same directory as the folder.

BEST++ files are named using the file extensions listed and de-
scribed in the table below.

File Extension Description

.BST A source program, a file that contains the
uncompiled version of your program.

.BPP A compiled program, a file that contains the
compiled version of the program ready to
download.

(continued)

BEST++ File
Structure

File Extensions

Table 3
File Extensions

10

Table 3
File Extensions
(continued)

File Extension Description

.FLD A folder, a file that contains the name and
location of the global dictionary and all associ-
ated programs.

.LST A list file, generated by the Make List File
command after a program is compiled. This
file is a listing of the program with line num-
bers and syntax error messages that were
detected during the BEST++ program compile.
This list file may also contain warnings that are
generated when BEST++ corrects certain
errors detected within a program.

Caution: Do not edit the list file because the
changes will not be saved to the source file.
Make all corrections in the source file.

Follow the steps below to access the BEST++ Programmer’s Envi-
ronment from the Network Service Tool's menu and then select the
PE menu bar.

1. Press 8 from the Network Service Tool’s Main Menu to
access the Comfort Controller BEST++ Programmer’s Envi-
ronment (PE). The PE menu bar consists of the following
items: File Edit BEST Options Help

2. Press the Alt key to access the PE menu bar or use the mouse
to select a menu item.

3. Type the first letter of the desired menu item to access it, or
use the right or left arrow key to access an item.

4. Type the highlighted letter of the command you wish to
access, or use the up or down arrow key to highlight a com-
mand from the menu item’s list of commands. Then press
Enter to select the command.

To exit a menu without making a selection, press the Escape
key.

How to Access
the Programmer’s
Environment from
the Network
Service Tool and
Select a
Command

11

The previous section How to Access the Programmer's Environment
from the Network Service Tool and Select a Command described
how to display the PE window and how to select a command from
the menu bar. This section describes the PE window layout and the
menu bar commands in more detail. The figure below shows the PE
window.

The Programmer's
Environment
Window

Figure 1
Programmer's
Environment Window

Title Bar

Menu
Bar

Scroll
Bar

Status Bar

BEST++ Programmer's Environment - C:\PROGRAM\CHILL.FLD
File Edit BEST Options Help

NETWORK_POINT CH1SS {91,0,CDP,0}

NETWORK_POINT CH2SS {92,0,CDP,0}

NETWORK_POINT CH3SS {93,0,CDP,0}

CONNECT

CONNECT

CONNECT

TIMER time_sec {0}

TIMER time_min {1}

TIMER time_hr {2}

TASK CHIL {," ",5,8,1,60}

STEP ONE

INPUTFROM CH1SS

IF CH1SS EQ 0 THEN

CWP1ST AS SENSED_DISC_INPUT {CWP1ST,0,75}

CWP2ST AS SENSED_DISC_INPUT {CWP2ST,0,75}

CWP3ST AS SENSED_DISC_INPUT {CWP3ST,0,75}

[C:\PROGRAM\CHILL.BST] 0,12

PE Editor

12

Title Bar Contains the product name BEST++
Programmer's Environment and identifies the
folder that is currently open.

Menu Bar Contains the PE menu items File, Edit, BEST,
Options, and Help used to write and debug
BEST++ application programs.

Status Bar Provides user feedback when commands are
being executed. It is subdivided from left to right
into three sections:

The first section is a pull down menu that allows
you to select any program in the folder currently
open. When selected, the program is displayed
on the screen.

The second section identifies the status of an
action in process, such as reading or writing to a
target device.

The third section on the far right displays the
target device address.

PE Editor The workspace for editing BEST++ programs.

Scroll Bar If all of the program being edited cannot be
displayed at once, clicking below the box in the
scroll bar enables you to move down.

13

Command Use this command to

New Folder create a new folder. When selected,
this command displays the New
Folder dialog box, which contains a
list of the existing folders in the
current directory. Refer to File Dialog
Box.

Open Folder open an existing folder. When se-
lected, this command displays the
Open Folder dialog box, which con-
tains a list of existing folders in the
current directory. Refer to File Dialog
Box.

Save Folder save the open folder. When selected,
this command displays the Save As
dialog box if the folder was not
already saved. Refer to File Dialog
Box.

Save Folder As ... save the open folder and all of the
.BST programs listed in the folder
under a new name. The saved folder is
given the Save As name. When
selected, this command displays the
Save As dialog box. When you save a
folder using this command, all pro-
grams in the folder will be copied to
the desired path. Refer to File Dialog
Box.

Delete Folder delete a selected folder. This com-
mand deletes the folder only; it does

(continued)

Programmer's
Environment
Menu Items
File

14

File (continued) Command Use this command to

 not delete any programs listed in the
folder. When selected, this command
displays the Delete dialog box. Refer
to File Dialog Box.

Note: When deleting a folder, you
must be in another folder.

New Program create a new program. When selected,
this command displays the New Task
dialog box. This dialog box lists the
existing programs and allows you to
name the new program. Refer to File
Dialog Box.

Open Program open an existing program to view or
edit. If the program is not part of the
open folder, you will be prompted to
add it to the open folder.

Save Program save the program in the PE editor
window.

Save Program As ... copy the open program and save it as a
different name or to a different direc-
tory. When selected, this command
displays the Save As dialog box. Refer
to File Dialog Box.

Remove Program remove the open program from the
currently open folder. A confirmation
dialog box will appear. Press Enter to
remove the program from the open
folder.

This process only removes a program
name from the open folder’s program
list. It does not delete the program.

(continued)

15

Command Use this command to

Delete Program delete a selected program. When
selected, this command displays the
Delete dialog box, which contains a
list of the existing programs. Refer to
File Dialog Box.

Print All print all programs listed in the opened
folder. This command prints the
actual programs, not just a list of
program names.

Print Program print the program in the Programmer's
Environment editor window.

Exit exit the Best++ Programmer’s Envi-
ronment.

The File dialog box allows you to define a folder or program name
and its storage or retrieval location.

This dialog box is displayed whenever you access a folder or pro-
gram. It is also activated when you perform a Save As. Use the Tab
key to move within the dialog box.

File Name: Enter a unique name (up to 8 alphanumeric
characters, with first 7 characters unique) of a
program or folder to save or retrieve. You must
maintain the file name extensions provided by
BEST++.

File Name list Select a name from the list of existing programs
or folders in the selected drive and directory. The
name that you select will appear in the file name
entry box.

(continued)

File (continued)

File Dialog Box

16

Drive Displays the current drive for storing or retrieving
files. When you use the pull down menu to select
a new drive, the directory list is updated.

Directory Displays the working directory on the current
drive. When you select a new directory, the file
name list is updated.

OK Confirms selections and exits the dialog box.

Cancel Exits the dialog box and restores the previous
settings. Any changes made are not saved.

You must highlight the text that you wish to cut, copy, paste, or
delete.

Note: If using the keyboard to cut, copy, paste, and delete text,
use the arrow key(s) to move your cursor to the beginning
of the text you wish to highlight. Highlight the text by
holding down the Shift key and pressing the appropriate
arrow key.

If you are using a mouse to cut, copy, paste, and delete
text, place your cursor at the beginning of the text you
wish to highlight and hold down the mouse button. Drag
the cursor until all of the text you want to affect is high-
lighted.

Command Use this command to

Cut remove the highlighted text. Shortcut
key: Control + X. The removed text
is saved to the clipboard for future use
with the Paste command. The clip-
board contains only the most recently
cut or copied text.

(continued)

File Dialog Box
(continued)

Edit

17

Command Use this command to

Copy copy the highlighted text and save it to
the clipboard. Shortcut key: Control +
C.

Paste insert previously cut or copied text
from the clipboard into your program
at the current cursor location. Shortcut
key: Control + V.

Delete permanently delete the highlighted
text. Shortcut key: F7. Deleted text is
not stored on the clipboard, and
therefore cannot be retrieved using the
Copy or Paste commands.

Find locate a designated text string. Short-
cut key: F3.

Dialog Box Options:

Find What: Enter the text string you
wish to find.

Find Next: Press Enter to locate the
designated text string in the program
you are editing.

Cancel: Exit the Find dialog box
without executing the Find command.

Replace replace one text string with another.
Shortcut key: Shift + F3

Dialog Box Options:

Find What: Enter the text string you
wish to find and change.

(continued)

Edit (continued)

18

Command Use this command to

Change To: Enter the text that will
replace the Find What text string.

Change Next: Select to locate and
replace the first instance of the Find
What text string.

Change All: Select to change all
instances of the Find What text string.

Cancel: Select to exit the Change
dialog box without executing a change
command.

Paste Function insert the text of the selected keyword
into your program where the cursor is
currently located. Refer to Paste
Function Dialog Box below.

allows you to view the syntax, identify
configuration and maintenance param-
eters, and get on-line help for each
keyword. By pasting the syntax into a
program at the cursor location, you
can use paste function as an alternate
way of entering text in a program.

The reserved words are grouped
according to functionality.

Select Paste Function to display the
list of reserved word groups as a
submenu, and use the up or down
arrow to highlight the group in which
you are interested. Press Enter again to
display the reserved words in the
selected group.

(continued)

Edit (continued)

19

Group Displays a List of

All all supported reserved
words, mathematical,
relational and logical
operators, and program
control

Operators all supported mathemati-
cal, relational, and
logical operators

Math mathematical functions
Functions
Program reserved words used to
Control control flow of program

logic

The top window where the cursor is
located allows you to enter the first
character of the reserved word or
symbol.

The center window contains the
reserved words in alphabetical order.
A scroll bar is provided for quick
scanning.

The bottom window contains the
syntax, functions or help information
for the highlighted keyword, depend-
ing on the command key selected:

Syntax Display the syntax for the selected
reserved word.

Funcs Display the configuration and mainte-
nance parameters for the selected
reserved word.

Help Display the syntax and on-line help
for the selected reserved word.

(continued)

Paste Dialog Box
Command Keys

20

Paste Paste the syntax for the selected
reserved word into the program you
are editing at the current cursor loca-
tion.

Exit Close the Paste Function dialog box.

Command Use this command to

Set Controller Address designate the address (CCN bus and
system element number) of the target
controller. When you select this
command, the Set Controller Address
dialog box displays. After you enter
and confirm the address, it displays in
the status bar.

Dialog Box Options:

Bus #: Carrier Comfort Network bus
number for the desired Comfort
Controller. Valid numbers range from
0 to 239.

Element #: Carrier Comfort Network
element number for the desired Com-
fort Controller. Valid numbers range
from 0 to 239.

OK: To save the information and exit
from the Set Controller Address
dialog box.

Compile Program compile the program that is open in
the Programmer's Environment editor.
When you select this command, the
Compiled Code dialog box lists the
results of the compile process, includ-
ing any syntax errors detected.

(continued)

Paste Dialog Box
Command Keys
(continued)

BEST

21

Command Use this command to

Compiled Code Box Options:

Print: Select to print the information
in the Compiled Code box.

Exit: Select to close the Compiled
Code box.

Compile All compile all of the programs contained
in the open folder in the order listed.
When you select this command, the
Compiled Code dialog box displays
the results of each compile process.

Compiled Code Box Options:

Print: Select to print the information
in the Compiled Code box.

Exit: Select to close the Compiled
Code box.

Decompile Program decompiles the program that is open
in the Programmer's Environment
editor. You can use this as a debug-
ging tool to evaluate how the compiler
interpreted your program. Selecting
this command displays a decompiled
version of the program.

Make List File creates a decompiled version of the
currently open program that includes
line numbers. You can use this
command when debugging your
program. Refer to the Debugging
System chapter of this manual.

(continued)

BEST (continued)

22

Command Use this command to

Listing Text Box Options:

Print: Select to print the Listing text
box.

Exit: Select to close the Listing text
box.

Show Compiler Window redisplay the Compiler Status win-
dow, which you can hide by clicking
the left mouse button when the mouse
is pointing outside the window.

Download Program download the last compiled version of
the program open in the PE editor.
You should always compile a program
before you download it, or you may
download a previously compiled
version that does not contain your
most recent changes.

Download All download all of the programs in the
open folder. Programs are downloaded
in the order listed in the folder. You
should compile all programs before
you download them.

Dialog Box Options:
Yes: Select to confirm correct target
comfort controller.

No: Select to return to the main screen
without downloading the programs in
the currently displayed folder.

BEST++ Debug debug programs. Refer to the Debug-
ging System chapter.

System Debug debug Comfort Controllers. Refer to
the Debugging System chapter.

BEST (continued)

23

Command Use this command to

Color Display when selected, set up the
Programmer's Environment to use a
color monitor. Otherwise, it assumes
a black and white monitor.

Report Warnings when selected, display warnings along
with syntax error messages. BEST++
generates warnings when it automati-
cally makes assumptions within a
program, i.e., replacing = with EQ in
IF... THEN... ENDIF statements. If
you have requested a list file of errors
using Make List File?, BEST++ saves
the warnings to the .LST file along
with the errors. Refer to the Syntax
Error Messages chapter for a list of
the warnings and error messages that
BEST++ can display.

Note: A program containing warn-
ings will compile and download
correctly. However, the program
could operate improperly.

Metric when selected, display configuration
and maintenance data in metric engi-
neering units instead of customary US
engineering units. Also displays
metric equivalents for Units Name.
Refer to the Debugging System
chapter of this manual.

Delete Template when selected, delete a source file's
After Download template after downloading the com-

piled version to the controller. This
prevents the program from being
uploaded and decompiled.

(continued)

Options

24

Command Use this command to

A template is an image of the source
file that provides the capability to
upload the file from the controller
back to the Network Service Tool.

Caution: A downloaded file whose
template has been deleted cannot be
uploaded to the Network Service Tool,
nor can it be edited. If you plan to
upload and edit files, do not delete the
templates after downloading.

Command Use this command to

Keywords access the help for reserved
words. This help is the same
help displayed when you select
Paste Function from the Edit
menu and then select Program
Control.

Advanced Features This command is the same as
Edit/Paste Function/All.

Units Name display the allowable entries for
analog input and analog output
display units for use with
constants.

About . . . display copyright information
and currently installed
Programmer's Environment and
database version numbers.

Options (continued)

Help

Creating an
Application

25

Creating an
Application

The step-by-step instructions in this section are written with the
assumption that you are using the Network Service Tool's
Programmer's Environment. If you are using the ComfortWORKS'
BEST++ Programmer's Environment, refer to Appendix D.

Before writing any BEST++ programs, you should decide how to
structure your application. If it will require multiple programs that
share data, you will need a global dictionary that defines these
common parameters.

A folder contains a list of all the programs composing an applica-
tion, the global dictionary, and their physical locations. Every
application, even those having only one program, should be con-
tained in a folder. The folder is not compiled or downloaded to the
Comfort Controller, so it uses no additional space.

When you open a new folder, the Programmer's Environment creates
a global dictionary program with the same name. Follow the steps
below to create or open a folder.

1. Select File from the PE menu bar.

2. Select either New Folder or Open Folder, depending on
whether you want to save the program in an existing or new
folder, and press Enter.

Depending on your selection, either the Open or New Folder
dialog box will display.

3. Enter a unique folder name using a .FLD extension and a
directory or, if saving the new program to an existing folder,
select an existing folder name and directory from the list.
Then select OK.

Note: The folder name and each program name can be up
to 8 characters long, but the first 7 characters must
be unique.

BEST++ will automatically open a program and assign to it
the same up to 8 character name you assigned to the folder.
This program, which BEST++ automatically opens for you, is
the global dictionary. BEST++ also automatically inserts the
PROGRAM statement.

How to Create or
Open a Folder

26

You write BEST++ programs as a sequence of statements. A state-
ment is a combination of BEST++ reserved words, mathematical
functions, operators, symbols, variables, and constants.
You can write BEST++ programs using either customary US or
metric engineering units. For information on using metric engineer-
ing units, refer to Appendix B.

Follow the steps below to add a new program to your folder.

1. Select File from the PE menu bar.

2. Select New Program from the File menu.

3. Enter a unique name for the new program. You can change
the directory and drive where the program will be saved.
Then select OK. The program name must be different from
the folder name and must have a .BST extension.

The PE will automatically insert the PROGRAM statement
and add the program to your folder.

4. Enter the TASK statement, followed by your task. End the
task with an ENDTASK statement.

A sample program is shown below.

PROGRAM sample {SAMPLE, “Custom Program sample”}

~ This program is just a sample.

TASK SAMPLE

x = y + z
c = a + b

ENDTASK

Follow the steps below to add an existing program to your folder.

1. Select File from the PE menu bar.

2. Select Open Program from the File menu.

3. Select the program to be added from the list displayed. You
can change the directory and drive if your program is not in
the current directory.

How to Add a
New BEST++
Program to a
Folder

Figure 2
Sample Program

How to Add an
Existing BEST++
Program to a
Folder

27

4. Select OK. The program opens and a dialog box prompts, Add
Task to Task List?. Answering Yes adds the selected program
to the folder.

Follow the instructions below to compile a BEST++ program.

1. Select Compile Program from the BEST menu.

When the compiling is complete, BEST++ displays the
Compile Code window. This window displays information
such as the number and type of syntax errors, if any, and the
program size. Refer to the figure below which illustrates what
the Compile Code window will display for the program
shown in Figure 2.

For a list of syntax error messages and their code numbers,
refer to the Syntax Error Messages chapter. If errors are not
detected, the number of errors will equal 0.

I:\PROGRAM\SAMPLE.BST
Objects Generated 10
Object File (.BPP) written
Download E2ROM Size = 181
 Program E2ROM Size = 222
 Total E2ROM Size = 403
 Program RAM Size = 64

Compilation Complete - Number of Errors 0

2. Press the Alt key to activate the Compile Code menu bar.
Then select either Print or Exit.

3. If no errors were detected during the compile, you can down-
load the program to a controller.

If errors were detected during the compile process, select
Make List File from the BEST menu to create a list file that
displays the program and allows you to see exactly where the
syntax error occurred. If necessary, you can expand the
window to full screen by clicking on the up arrow. Refer to
the figure below, which illustrates a program containing a
syntax error message and the corresponding list file.

How to Compile a
BEST++ Program

Figure 3
Compile Code Window

28

Caution: Do not edit the list file because the changes will
not be saved to the source file. Make all correc-
tions in the source file.

Sample Program

PROGRAM sample {SAMPLE, “Custom Program sample”}

~ This program is missing the TASK statement.

x = y + z
c = a + b

ENDTASK

List File

BEST++ - Program Listing I:\PROGRAM\SAMPLE.BST
SE2PROM Size = 181
E2PROM Size = 222

 RAM Size = 64

1 Errors Detected

01 PROGRAM sample {SAMPLE, “Custom Program sample”}
02
03 ~ This program is missing the TASK statement.
04
05
06
07 x = y + z

*** Line 7, Error 32 (=), TASK missing
08 c = y + z
09
10
11 ENDTASK

Symbol Table
line #
07 VARIABLE x
07 VARIABLE y
07 VARIABLE z
08 VARIABLE c

Figure 4
Sample Program,
Corresponding List File,
and Corrective Action

29

Action
Press the Alt key to activate the menu bar. Then select either Print
or Exit. Fix the errors in your source (.BST) program and re-com-
pile.

When you open a program, the last compiled version of that source
file is available to download. If you changed the program, you must
compile it before downloading. When you download a compiled
program to a Comfort Controller, the compiled program is copied to
that Comfort Controller.

Follow the instructions below to download a BEST++ program.

1. Verify that the correct address for the target controller appears
in the upper right corner of the screen, just below the menu
bar. If it is correct, proceed to Step 2.

If you need to change the address, select Set Controller
Address from the BEST menu. Then specify the bus number
and system element number of the controller to which you
want to download the program. Then press OK. The new
address appears on the screen.

2. Select Download Program from the BEST menu. Depending
on whether the download is successful, BEST++ will display
Download Complete or Download Failed.

If the download failed, perform the following troubleshooting
measures:

• Verify that the CCN Communication Bus is connected
correctly.

• Verify that you can communicate with the controller from
Carrier Controls.

• Select Database Control (UPDATEDB) from System
Debug. Verify that there are no errors and that enough
memory is available for your program. Refer to the
Debugging System chapter of this manual.

How to Download
a BEST++ Program

Figure 4
Sample Program,
Corresponding List File,
and Corrective Action
(continued)

30

Follow the instructions below to edit a BEST++ program (.BST file)
that resides only in a connected controller.

1. Upload the program by selecting System Debug from the
BEST menu to upload the list of programs from the selected
controller. Then select BEST++ Sources and select the
program you want to view. Press the Alt key to activate the
menu, then select Upload. Press the Alt key again, and select
Exit.

Note: BEST++ automatically decompiles the program as it
is uploaded.

2. Modify, save, compile, and download the program.

Note: The program will not contain remarks. These are
saved only in the original source program.

How to Edit a
BEST++ Program in
a Connected
Controller

Rules for Creating
Names in BEST++

31

Follow the rules below when creating names for the following items
in BEST++:

• Tasks • Timers
• Variables • Counters
• Steps • Arrays
• Labels

Rule 1 Names must consist of consecutive alphanumeric characters with no
spaces, mathematical, relational, or logical operators.

Invalid CHLR 1
SFS*1

Valid CHLR1
SFS_1
SUPPLY_FAN_STAT_1

Suggestion: Use the underscore character (_) to represent a space.

Rule 2 Letters, numbers, and the following special symbols are acceptable:

@ #

$ %
_ (underscore)

Rule 3 The first character of a name can be a letter, number, or any of the
special symbols listed in Rule 2.

Note: A name cannot consist of only numbers. There must be at least
one character that is not a number.

Valid $CHILLER
CHILLER7
7CHILLER

Invalid 763

Rules for
Creating
Names in BEST++

32

Rule 4 Names can be in either uppercase or lowercase. However, BEST++
is case sensitive. Typing the same name inconsistently will cause it
to be interpreted as two different variables.

Invalid VARIABLE FAN
IF TEMP1 > 70 THEN TURNON Fan ENDIF

x = 2y + 3
IF X > 20 THEN GOTO 5 ENDIF

Valid VARIABLE fan
IF TEMP1 > 70 THEN TURNON fan ENDIF

X = 2y + 3
IF X > 20 THEN GOTO 5 ENDIF

Rule 5 The following items cannot be used as variable names:

• Reserved words
• Names of tasks, arrays, steps, labels, timers, and counters
• Math functions
• Logical, relational, and mathematical operators

Invalid MONTH = x

Valid x = MONTH

33

Rule 6 Within a Comfort Controller, you should create a unique name
for each variable. If you want a CONNECTed variable to
represent the same constant, value, or decision in more than one
program, you must do these two things:

1. Define the variable in the global dictionary.

2. Be consistent when typing the name in each program, i.e.,
be case sensitive. Type the name exactly as it appears in the
global dictionary.

Note: Using the same name to represent different constants,
values, or decisions will produce the following error
message during program compilation: duplicate user name.

Invalid CONNECT TEMP1 AS TEMP_INPUT {,1}
CONNECT TEMP1 AS TEMP_INPUT {,2}

Valid CONNECT TEMP1 AS TEMP_INPUT {,1}
CONNECT TEMP2 AS TEMP_INPUT {,2}

Rule 7 Create variables that clearly identify the values they are repre-
senting.

Poor A3 to represent pump #1
ABC to represent a cooling coil valve

Better PUMP1 to represent pump #1
CCV to represent a cooling coil valve

34

Rule 8 To avoid possible confusion when assigning names to points, use
the same point names that are used in the Network Service Tool.

Network Service Tool BEST++

Poor SFS SUPFANST
HCV HTGCV

Better SFS SFS
HCV HCV

Rule 9 Unlike BEST, when you load a BEST++ program the values of
all unCONNECTed variables are initialized to (start out at) 0,
unless you explicitly initialize the variable to a particular value
using { }.

Example VARIABLE TEMP1

Interpretation: When this line is encountered, BEST++ will initial-
ize TEMP1 to 0.

Example VARIABLE TEMP1 {6}

Interpretation: When this line is encountered, BEST++ will initial-
ize TEMP1 to 6. The curly brackets {} indicate initialization.

Statements

35

Statements

A BEST++ program is made up of statements that define and control
a program. A statement is a combination of reserved words, math-
ematical functions, operators, symbols, variables, and constants.

BEST++ statements enable you to:

• define the beginning and end of a TASK.
• control the flow of the task with STEPs, DELAY statements, and

GOTO statements.
• pass control to and from standard Comfort Controller algorithms.
• RUN and HALT other tasks.
• give reference names to points.
• read and write to points and configuration data.
• identify the beginning and end of LOOPs within the task.
• create and control timers and counters.
• insert helpful comments within the program.
• use a variety of built-in programming functions.
• use algebraic and logical expressions.

Nine statements are shown in the sample task below:

PROGRAM CHILLERS {chillers, East Plant,} ~ Statement 1

TASK CHILLER1 ~ Statement 2

:X ~ Statement 3

VAR1 = TEMP1 + TEMP2 ~ Statement 4

IF TASKTIMER > 3600 ~ Statement 5
THEN HALT CHILLER

ENDIF

DELAY CHILLER1 (10) ~ Statement 6

SQRT (3) ~ Statement 7

GOTO X ~ Statement 8

ENDTASK ~ Statement 9

Purpose

Examples of
Statements

Figure 5
Statements in a Sample
Program

36

Statements are entered in the Programmers Environment in one of two
ways:

• Typing it in manually, pressing Enter when finished. A tilde (~) is
not required to continue a statement onto the next line.

• Inserting the syntax for all reserved words, operators, and math
functions into your task by using the Paste Function command.

Multiple BEST++ statements can be written on a single program line.
The statements can be separated by one or more spaces or by a semi-
colon (;).

IF OAT > 70 THEN TURNON FAN; COUNT = COUNT + 1 ENDIF

 Interpretation: In the above program line, if OAT is greater than 70,
FAN will be turned on, and the counter will be incremented by 1. If
OAT is less than or equal to 70, FAN will not be turned on and the
counter will not be incremented by 1. The semicolon indicates to
BEST++ to treat the two action statements as one.

Creating
Statements

Separating
Statements

Example

37

Use of Indentation
and Blank Lines

For the purpose of readability and organization, especially if the pro-
gram is rather large, it is good practice to use indentation and multiple
lines to type a statement.

Caution: The maximum number of lines in a BEST++ program is
600. In the examples shown below, Example 1 uses one
program line. Example 2 uses two lines, and Example 3
uses three lines.

BEST++ interprets the following three statements in the same way:

IF ALARM EQ 1 THEN GOTO FOUR

IF ALARM EQ 1
THEN GOTO FOUR

IF ALARM EQ 1
THEN

GOTO FOUR

This is an example of a program typed using indents and blank lines:
TASK MSI

 ~REM BUS 0 CTRLR 1
 ~REM 2/11/96 THIS PROGRAM LOOKS AT THE
 ~REM STATUS OF TWO PUMPS AND
 ~REM TURNS A THIRD STATUS POINT
 ~REM ON IF EITHER PUMP IS ON
 ~REM AND TURNS IT OFF
 ~REM IF BOTH PUMPS ARE OFF.
 ~REM THE STATUS OF EACH POINT IS
 ~REM CHECKED EVERY 5 SECONDS.

 STEP ONE
 IF PMPS1 EQ 1 OR PMPS2 EQ 1

THEN TURNON PMPS
 ENDIF
 IF PMPS1 EQ 0 AND PMPS2 EQ 0

THEN TURNOFF PMPS
 ENDIF
 DELAY MSI (5)
 REPEAT

 ENDTASK

Example 4

Example 3

Example 2

Example 1

38

Syntax Rules
The following are syntax rules that you must adhere to when creating
BEST++ statements. In most cases, if these rules are broken, a syntax
error message appears on the screen when the program is compiled.

Note: BEST++ does not generate error messages for logical errors.

Rule 1 In BEST++ statements, reserved words, logical
operators, and functions must always be uppercase.
A syntax error results if you do otherwise.

Any part of a statement, other than those specified
above, can be either uppercase or lowercase. How-
ever, we recommend that you always use upper case.

Invalid if OAT > 70 and FAN eq 0 then turnon FAN endif

Valid IF oat > 70 AND fan EQ 0 THEN TURNON fan ENDIF
IF OAT > 70 AND FAN EQ 0 THEN TURNON FAN ENDIF

Rule 2 You must be consistent in spelling and in the use of
capitalization when creating and referencing vari-
ables. For example Fan, fan, and FAN would be
interpreted as three different variables.

Invalid IF OAT > 70 AND FAN = 0 THEN TURNON fan.

Valid IF OAT > 70 AND FAN = 0 THEN TURNON FAN.

Note: In this manual, statements are typed in
uppercase.

Uppercase vs.
Lowercase

39

For readability purposes you can use spaces almost anywhere in a
statement. In certain instances, spaces must be used as listed in the
rules below.

Rule 3 No spaces are needed after the tilde (~), if it is used
to begin a remark.

Valid ~REM This program determines the average
~REM temperature of four sensors.

Valid ~This program determines the average temperature of
~four sensors.

Rule 4 At least one space must appear before and after
reserved words and logical operators.

Invalid WHENTEMP1>70TURNONFAN1

Valid WHEN TEMP1>70 TURNON FAN1

Guideline To enhance the readability of a program, you can
place space(s) before and after mathematical or
relational operators. Including these spaces
however, is not necessary; doing so only enhances
the appearance of the program.

Valid x=temp1+temp2 + temp3/ 3

Use of Spaces

40

Rule 5 Commas must be used in an initialization string to
separate initialization values.

Valid TASK mytask {MYTASK, "My task", 5, 8, 1, 6, 0}

Rule 6 Commas can be used in initialization strings as
placeholders for default values.

Valid TASK mytask {, , , , , 6, 0}

Rule 7 Numbers must be typed without commas.

Invalid x = 1,000

Valid x = 1000

Rule 8 Parentheses must be used in pairs. In other words,
a left parenthesis must accompany a right one, and
vice versa.

Parentheses can be used to define the order of execu-
tion in a mathematical expression.

Invalid D = A + B) - C

Valid D = (A + B) - C

Interpretation: BEST++ first executes what is inside
the parentheses. A and B are added and then C is
subtracted from the sum. The variable D is assigned
the value of the difference.

Use of CommasUse of Commas

Use of Parentheses

41

Rule 9 If parentheses are nested, the operation within the
innermost pair is executed first.

Valid D = ((A + B) * C)

Interpretation: BEST++ first executes the operation
within the innermost parentheses. First A and B are
added, then the sum is multiplied by C. The variable
D is assigned the value of the product.

Rule 10 Multiple non-nested parentheses in a statement
are evaluated from left to right.

Valid E = (A + B) / (C - D)

Interpretation: A and B are added before D is sub-
tracted from C because BEST++ first executes the
operation within the leftmost set of parentheses. The
sum of A and B is then divided by the difference of D
from C. The result is assigned to the variable E.

Rule 11 In a mathematical expression, a mathematical
operator must separate two sets of parentheses
that are side by side. For instance, BEST++ does
not assume that you intend to multiply the two
expressions. BEST++ does not give you an error
message if you omit the mathematical operator,
but an incorrect value will be calculated.

Invalid X = (A - B) (C * D)

Valid X = (A - B) * (C * D)

Interpretation: The result of A minus B is multiplied
by the product of C and D. The resulting value is
assigned to the variable X.

42

Reserved Words,
Logical Operators,
and Math Functions

43

This chapter discusses each BEST++ reserved word, logical operator,
and math function. For easy reference, they are listed alphabetically.
The information for each reserved word, operator, and math function
includes a description, syntax, examples of use, and usage rules.

Reserved words, logical operators, and mathematical functions are
part of the BEST++ language and are used to make up BEST++
statements. They cannot be used as variable, task, step, label, array,
counter, or timer names. The various types of reserved words follow.

• definition
ANALOG_MAINTENANCE DIM
ARRAY FLOAT_CONFIGURATION
CONNECT TIMER
COUNTER VARIABLE

• input/output
AUTO TURNOFF
INPUTFROM TURNON
OUTPUTTO UPDATE
RELEASE

• task control
CALL PROGRAM
DELAY REPEAT
ENDTASK RETURN
EXIT RUN
GOTO STEP
HALT SUBROUTINE
IF... THEN... ELSE... ENDIF... TASK
LOOP... ENDLOOP WHEN

• calendar/clock
DOM MINUTE
DOW MONTH
DOY SECOND
HOUR

• counter control
DECREMENT
INCREMENT
RESET

Reserved
Words, Logical
Operators, and
Math
Functions

Reserved Words

About this
Chapter

44

• timer control

RESET
START
STOP

• general purpose

REM

Logical operators are used to test two or more logical conditions or
to generate a logical (TRUE/FALSE) result. Logical operators
cannot be used as variable, task, step, label, array, counter, or timer
names. They are listed below in order of precedence of execution in
a statement.

NOT
AND
OR
XOR

Along with a detailed description of each operator, truth tables for
the logical operators are provided in this chapter.

Math functions are routines that calculate a value. Math functions
cannot be used as variable, task, step, label, array, timer, or counter
names. The BEST++ math functions are:

ABS PID
ACOS POWER
ASIN REMAIN
ATAN ROUNDDOWN
COS ROUNDUP
COSH SIN
EXP SINH
FRACTION SQRT
LOG SWITCH
LOG10 TAN
MIN TANH
MAX

Math Functions

Logical Operators

45

When used in a BEST++ statement, this function provides the absolute
value of the constant, variable, or mathematical expression following it.

ABS x or ABS (x)

where x is a constant, variable, or expression.

Y = ABS -6

Interpretation: The absolute value of the -6 is calculated and assigned to
the variable Y.

TVAL = ABS (TEMP1 - TEMP2)

Interpretation: The variable TVAL is assigned the absolute value of the
difference of TEMP1 and TEMP2.

1. ABS cannot appear on the left side of the equal sign in an assign-
ment statement.

For example, ABS X = Y is invalid.

ABS may, however, be used on the left side of an equal sign used
as a relational operator.

For example: IF ABS (X) EQ 10 THEN GOTO THREE ENDIF

2. A constant, variable, or mathematical expression must follow
ABS.

3. If the variable is part of a mathematical expression, the use of
parentheses ensures the proper order of evaluation of the terms.
For example, TVAL = ABS TEMP1 - TEMP2 differs from the
example with parentheses shown above. Without parentheses, the
value of TEMP2 is subtracted from the absolute value of TEMP1,
and the result is assigned to the variable TVAL.

ABS

Syntax

Example 1

Example 2

Usage Rules

46

When used in a BEST++ statement, the ACOS (arc cosine) function
provides the inverse cosine of an angle. The input (x) is the ratio of
an adjacent side of a right angle triangle and its hypotenuse. The
output (result of ACOS x) is the angle subtended by the sides ex-
pressed in radians. One radian equals 360/(2π) or 57.29577 degrees.

ACOS x

where x is a constant, variable, or mathematical expression ranging
from -1 to 1. Invalid statements return a value of 0. For example,
ACOS 5 is invalid.

 PI = ACOS (-1)

Interpretation: When BEST++ encounters this line in the task, it
calculates the value of PI as 3.141593.

ACOS

Syntax

Example

47

This reserved word is used in a BEST++ statement to define mainte-
nance variables. Maintenance variables give you the ability to display
BEST++ variable or statement values on the maintenance screen
without having to create software points.

ANALOG_MAINTENANCE maintname (x) {name, “description”,
units}

where maintname is a unique BEST++ user-configurable name for
the maintenance decision

x is the BEST++ variable or statement value that will be
displayed on the maintenance screen

name is the user-configurable, up to 8 character name for the
maintenance decision

description is the user-configurable, up to 24 character
description of the maintenance decision

units is the engineering unit name or number for the mainte-
nance decision

ANALOG_MAINTENANCE msetpoint (setpoint) {SETPOINT,
“Calculated Setpoint”, 1}

Interpretation: A maintenance point that displays the value of
setpoint, in units of ⋅F, will be created for the program.

ANALOG_MAINTENANCE msetpointC ((setpoint-32)*1.8)
{METRICSP,”Setpoint in deg”, 56}

Interpretation:A maintenance point that displays the value of setpoint,
will be created for the program and converted to Celsius. Engineering
units will not be displayed.

ANALOG_
MAINTENANCE

Syntax

Example 1

Example 2

48

 1. The maintname cannot be used as a BEST++ variable. The
following example is invalid:

x = msetpointC *2

 2. If name is omitted, the default name of “VALUE” will be
used.

 3. If description is omitted, the default description of
“Value” will be used.

 4. Use a quotation mark before and after description if it con-
sists of spaces or any characters (+, -, etc.).

5. Use analog_maintenance to display discrete values (0 and 1)
in addition to analog values.

Usage Rules

49

This operator is used in a BEST++ statement to test two logical
conditions.

It provides a result of TRUE if both the conditions tested are true
and a result of FALSE if either of the conditions is false.

For analog variables, BEST++ interprets any number other than zero
as TRUE. For discrete variables, 1 = TRUE, 0 = FALSE.

A statement may contain multiple ANDs.

Note: Do not confuse this logical operator with the mathematical
operator +. The logical operator AND cannot be used to
add numbers.

AND cannot be used to link statements together. Use the
semicolon (;) instead.

Invalid: TURNON FAN1 AND FAN2
Valid: TURNON FAN1; TURNON FAN2

x1 x2 x1 AND x2

T T T
F T F
T F F
F F F

x1 AND x2

where each x is a logical condition or variable.

Syntax

Truth Table

AND

50

IF (TEMP1 > 72) AND (TEMP2 > 72) THEN RUN CHILLER
ENDIF

Interpretation: If and only if both TEMP1 and TEMP2 are greater
than 72 degrees when this statement is executed, then a task named
CHILLER is activated.

IF FAN1STAT AND FAN2STAT THEN TURNON FAN3 ENDIF

Interpretation: If both FAN1STAT and FAN2STAT are ON when
this statement is executed, then FAN3 is turned on.

IF FANSTAT1 AND PUMPSTAT AND FANSTAT2 THEN
TURNON FAN3 ENDIF

Interpretation: If FANSTAT1 and PUMPSTAT and FANSTAT2
are ON when this statement is executed, then FAN3 is turned on.

1. A variable, statement, or variable must immediately precede
the word AND.

2. A variable, statement, or variable must immediately follow
the word AND.

3. If multiple ANDs are used in a statement, they are evaluated
pair-wise, from left to right. A AND B AND C is evaluated
as (A AND B) AND C.

Example 1

Example 2

Example 3

Usage Rules

51

This reserved word defines an array name and the number of ele-
ments within the array. An array created using an ARRAY state-
ment can consist of one of the following: hardware points, software
points, HVAC functions, system functions, schedules, or alarms.
Comparatively, an array created using a DIM statement can only
consist of numbers. BEST++ allows only one dimensional arrays to
be created.

ARRAY x AS A reserved word {y}

where x is the name of the array.

reserved word is the array's element type. For a list of the
element types, use the Paste Function command. Select
ARRAY. Its element types will display in the Reserved
Word list. Select an element type from the list to display
how it is used in the ARRAY syntax.

y is a positive integer that denotes the number of elements in
the array. The allowable entries are 1 to 99. The default
value is 10.

ARRAY PUMPS AS A DISC_OUTPUT {3}
CONNECT PUMP1 AS A DISC_OUTPUT {PUMP1}
CONNECT PUMP2 AS A DISC_OUTPUT {PUMP2}
CONNECT PUMP3 AS A DISC_OUTPUT {PUMP3}
TASK PUMPSTRT
PUMPS[1].ADDRESS = ? PUMP1 ~ SET ELEMENT 1
PUMPS[2].ADDRESS = ? PUMP2 ~ SET ELEMENT 2
PUMPS[3].ADDRESS = ? PUMP3 ~ SET ELEMENT 3

I = 1
IF PUMPS[1] EQ 1 THEN

TURNON PUMPS[I + 1]
TURNOFF PUMPS[I + 2]

ENDIF

Caution: You must use the PUMPS[1].ADDRESS,
PUMPS[2].ADDRESS, PUMPS[3].ADDRESS syntax
exactly as shown in the example to connect to the
pumps. These statements must be inside the task where
they will be executed at least once when the program
runs.

ARRAY

Syntax

Example

52

Interpretation: An array of discrete output points named PUMPS
with three elements is created. The elements are referenced as
PUMPS[1], PUMPS[2], and PUMPS[3].

Using the indirect assignment symbol (?), the first array element is
assigned to the CONNECTed DO at address 1. The second array
element is assigned to the CONNECTed DO at address 2, and the
third array element is assigned to address 3.

The value of the first pump is read and if it is on (= 1), the next
pump is turned on and the following pump is turned off.

Conceptually, this array can be illustrated as follows:

 ARRAY PUMPS

 Element Value of Element

PUMPS[1] Value of PUMP1
PUMPS[2] Value of PUMP2
PUMPS[3] Value of PUMP3

DIM

1. The number of elements in an array must be an integer value
greater than zero.

2. You cannot assign an array to another array.

3. You must assign each item within an array separately.

Usage Rules

See Also

53

When used in a BEST++ statement, the ASIN (arc sine) function
provides the inverse sine of an angle. The input (x) is the ratio of an
opposite side of a right angle triangle and its hypotenuse. The output
(result of ASIN x) is the angle subtended by the sides as expressed
in radians. One radian equals 360/(2π) or 57.29577 degrees.

ASIN x

where x is a constant, variable, or mathematical expression ranging
from -1 to 1. Invalid statements return a value of 0. For example,
ASIN 5 is invalid.

HALF PI = ASIN (1)

Interpretation: When BEST++ encounters this line in the task, it
calculates the value of PI/2 .

ASIN

Syntax

Example

54

When used in a BEST++ statement, the ATAN (arc tangent) func-
tion provides the inverse tangent of an angle. The input (x) is the
ratio of the opposite side and adjacent side of a right angle triangle.
The output (result of ATAN x) is the angle subtended by the side as
expressed in radians. One radian equals 360/(2π) or 59.29577
degrees.

ATAN x

where x is a constant, variable, or mathematical expression.

QUARTERPI = ATAN (1)

Interpretation: When BEST++ encounters this line in the task, it
calculates the answer as π/4 or .7853982 degrees.

ATAN

Syntax

Example

55

This reserved word is used in a BEST++ statement to remove a
force from an internally CONNECTed point or an array element.
BEST++ can remove forces equal to or less than the value entered as
forcepri in the TASK statement if a level 8 force (BEST++) is not
involved. For information on forcepri, refer to TASK in this chapter
and Appendix A (Comfort Controller Force Priorities).

A task with a higher priority for execution, as defined in the TASK
statement, will force over a task with a lower priority.

For example, you have two BEST++ tasks that force the same point:

TASK1 — forcepri: 4 (Building Supervisor)

TASK2 — forcepri: 8 (BEST++, which is lower than 4)

TASK1 will force over TASK2. BEST++ will hold TASK2's force
in reserve.

A task can AUTO any point with the same or higher force level, that
is, a task with force level 4 can AUTO a point with force level 7,
but a task with level 7 cannot AUTO a point with level 4.

If TASK1 AUTOs the force, BEST++ will take off the level 4 force
and put back the level 8 force.

If TASK2 AUTOs the force, it will take off the reserved level 8
force but leave the level 4 force.

AUTO x

where x is a configured and CONNECTed input/output point.

CONNECT PUMP AS A DISC_OUTPUT {PUMP}
IF CHILLEDWATER > 45 THEN AUTO PUMP ENDIF

Interpretation: When BEST++ encounters this line and
CHILLEDWATER is greater than 45, BEST++ removes the force
(ON/OFF) on PUMP and returns it to automatic control.

AUTO

Syntax

Example

56

This reserved word is used to execute a subroutine. Subroutines are
useful when the same mathematical procedure is performed in
multiple places in a task or tasks. If your task requires the use of
subroutines, use the CALL statement to invoke the subroutine. The
task in which the CALL statement resides is known as the CALLing
task.

x = CALL y (arg1,arg2,arg3,arg4)

where x is any variable.
y is the name of the subroutine.
arg1, arg2, arg3, and arg4 are the values(arguments)
passed to the subroutine. Arguments are optional, and up to
four are permitted.

~ SUBROUTINE to filter a value between a and b
~ x is the value to be filtered
~ if x is less than a then result is 0
~ x increases proportionally from 0 to c between a and b
~ if x is greater than b the result is c
SUBROUTINE FILTER (x,a,b,c)

IF x < a THEN
result = 0

ELSE
IF x >6 THEN

result = c
ELSE

result = (b - a) * (x - a) / c
ENDIF

ENDIF
RETURN (result)
TASK subtest
input = 7
filteredinput = CALL FILTER (input,-5,13.7,100)
ENDTASK

Interpretation: Refer to the remarks in the example.

RETURN, SUBROUTINE

1. CALL must always appear to the right of the = sign.
2. If you do not use arguments, you must still type () after the

name of the subroutine.
3. A SUBROUTINE Must end with a RETURN statement.

CALL

Syntax

Example

Usage Rules

See Also

57

Any hardware or software point, configuration or maintenance deci-
sion, HVAC function, system function, schedule, or alarm in a control-
ler that is to provide input to a BEST++ task or that is to be controlled
by a BEST++ task must be identified by a variable name (must be
CONNECTed).

Once an item is CONNECTed to a variable name, it will be read or
controlled whenever the connected variable name is encountered in the
BEST++ task.

There are two basic types of CONNECTS — internal and external. If
the item to be read or controlled is internal to (exists in) the controller
in which the task resides, use an internal CONNECT. If the item to
be read or controlled is external to (does not exist in) the controller in
which the task resides, use an external CONNECT.

When compiling existing FID BEST programs, the BEST++ compiler
automatically converts the old syntax to an appropriate BEST++
syntax.

To help familiarize FID BEST users with BEST++ CONNECT state-
ments, the explanation of CONNECT includes both FID BEST and
BEST++ CONNECT syntax.

Below is a comparison of FID BEST and BEST++ CONNECT syn-
tax. Descriptions, examples, and usage rules begin on the following
page.

CONNECT

Compiling FID BEST
CONNECT Statements

FID BEST and BEST++

Syntax

Comparison of BEST and
BEST++ CONNECT Syntax

58

Internal CONNECTs (CONNECTs within a controller)

CONNECTing to a point by variable name:
FID BEST CONNECT PTNAME AS A type TO point#
BEST++ CONNECT var AS A vartype {PTNAME}

Note: point# is a unique number greater than 99 (1-64 hardware, 65-99 software). PTNAME is the actual point name as configured
in the controller.

CONNECTing to a point by point number
FID BEST CONNECT var AS A type TO point#
BEST++ CONNECT var AS A vartype {, point#}

Note: point# is the actual hardware or software channel number as configured in the controller.

CONNECTing to a decision:
FID BEST CONNECT var AS A DECISION TO table# point#, decision#
BEST++ CONNECT var AS A vartype {VARNAME}
Note: VARNAME is the actual name of a hardware or software point, HVAC function, system function, schedule, or alarm as

configured in the controller. You can access a function, or maintenance or configuration decision within a function, by
appending .decname to var in a statement later in the task — do not append it to var in the CONNECT statement.

CONNECTing to a task:
FID BEST not supported
BEST++ CONNECT var AS A task {TASKNAME}

Note: TASKNAME is the actual name of the task.

External CONNECTs (CONNECTs to another controller on the same CCN)

CONNECTing to a point by variable name:
FID BEST CONNECT PTNAME AS A type TO point# IN CCN_element#
BEST++ NETWORK_POINT var {CCN_element#, CCN_bus#, PTNAME}
Note: point# is a unique number greater than 99. PTNAME is the actual point name as configured in the controller.

CONNECTing to a point by point number:
FID BEST CONNECT var AS A type TO point# IN CCN_element#
BEST++ NETWORK_POINT var {CCN_element#, CCN_bus#, , point#}
Note: point# is the actual hardware or software channel number as configured in the controller. You must CONNECT to a point in

a UT203 FID or VVT Gateway by variable name instead of by point number.

CONNECTing to a decision in a UT203 FID, 32MP Gateway, or VVT Gateway:
FID BEST CONNECT var AS A DECISION TO table# point#, decision# IN CCN_element#
BEST++
UT203 FID NETWORK_DECISION var {CCN_element#, CCN_bus#, table#, point#, decision#}
32 MP GW NETWORK_DECISION var {CCN_element#, CCN_bus#, 0, table#, index#}
VVT GW NETWORK_DECISION var {CCN_element#, CCN_bus#, 0, device#, decision#}

CONNECTing to a point's decision by decision name in a Comfort Controller:
FID BEST not supported
BEST++ NETWORK_CONNECT var AS A vartype.decname {CCN_element#, CCN_bus#, PTNAME}

CONNECTing to a function's decision in a Comfort Controller:
FID BEST not supported
BEST++ NETWORK_CONNECT var AS A functiontype.subfunction.decname {CCN_element#, CCN_bus#, FUNCNAME}
Note: In this external CONNECT syntax, functiontype is the algorithm, system function, schedule, or alarm type. subfunction is

the name of an HVAC function or alarm function. decname is a maintenance or configuration decision within the
subfunction. FUNCNAME is the actual name of the function (as described by functiontype) as configured in the controller.

59

Internal CONNECTs

Internally CONNECTing
To a Point by Variable
Name

Read the information below to CONNECT to an internal point by vari-
able name.

CONNECT PTNAME AS A type TO point#

where PTNAME is the actual point name as configured in the controller.

type is the point type: AI, AO, DI, or DO.

point# is a unique number greater than 99.

CONNECT SPT AS A AI TO 101

CONNECT var AS A vartype {PTNAME}

where var is the variable name you are assigning to the point.

vartype is the point type. For a list of vartypes, use the Paste
Function Command to display the syntax for CONNECT.
vartypes will appear in the Reserved Word List. For information
about the Paste Command, refer to the Edit Menu Summary in
The BEST++ Programmer's Environment chapter.

PTNAME is the actual point name as configured in the controller.

CONNECT SPT AS A TEMP_INPUT {SPT}

FID BEST Syntax

FID BEST Example

BEST++ Syntax

BEST++ Example

60

Read the information below to CONNECT to a point by point number.

CONNECT var AS A type TO point#

where var is the variable name you are assigning to the point.

type is the point type: AI, AO, DI, or DO.

point# is the actual hardware (1-64) or software (65-99) channel
number.

CONNECT SUPFAN AS A DO TO 8 USING SAFETY LIMITS 0,0

CONNECT var AS A vartype {, point#}

where var is the variable name you are assigning to the point.

vartype is the point type. For a list of vartypes, use the Paste
Function Command to display the syntax for CONNECT.
vartypes will appear in the Reserved Word List. For informa-
tion about the Paste Command, refer to the Menu Command
Summary in The BEST++ Programmer's Environment chapter.

point# is the actual hardware (1-64) or software (65-99) channel
number.

CONNECT supfan AS A DISC_OUTPUT {,8}

Internally CONNECTing
To a Point by Point
Number

FID BEST Example

BEST++ Syntax

FID BEST Syntax

BEST++ Example

61

Read the information below to CONNECT to configuration or
maintenance decisions.

Note: It is important to note that you cannot write to Comfort
Controller maintenance decisions. You can, however, read
from Comfort Controller maintenance decisions without
negative consequence.

CONNECT var AS A DECISION TO table# point#, decision#

where var is the variable name you are assigning to the decision.

table# is the controller table number associated with the
decision type. The decision types are as follows:
0 = Global decision (applicable only to UT203 FIDs)
1 = DO, 2 = AO, 3 = AI, 4 = DI, 5 = PI, 6 = TS, 7 = SS,
8 = HOL

point# is the actual hardware or software channel number.

decision# is the decision number.

CONNECT STPTLO AS A DECISION TO 701, 2

CONNECT var AS A vartype {VARNAME}

where var is the variable name you are assigning to the decision.

vartype is the point type or function type. For a list of
vartypes and function types, use the Paste Function Com-
mand to display the syntax for CONNECT. vartypes and
function types will appear in the Reserved Word List. For
information about the Paste Command, refer to the Menu
Command Summary in The BEST++ Programmer's Environ-
ment chapter.

VARNAME is the actual name of a hardware or software
point, HVAC function, system function, schedule, or alarm
as configured in the controller. You can access a decision
within a function by appending .decname to var later in the
task. Do not append it in the CONNECT statement. You
can access a function or maintenance or configuration deci-
sion of a subfunction (HVAC or alarm function) by append-
ing .subfunction.decname to var later in the task. Do not
append it in the CONNECT statement.

Internally CONNECTing
To a Decision

FID BEST Syntax

FID BEST Example

BEST++ Syntax

62

To connect to the Occupied High parameter of a Setpoint Schedule, select
EDIT from the toolbar, then PASTE FUNCTION, ALL, and highlight
CONNECT.
Click on the SYNTAX button and you will see the syntax for CONNECT
in the bottom box. Highlight SETPOINT in the upper box and click on the
FUNCTIONS button. Scroll down the bottom box until you see ~ C or ~
M on the right. You will use setpointname.OCCHGH in your program.
Connect to the setpoint schedule in your dictionary as follows:

CONNECT setpointname AS A SETPOINT {SETPTxx}

where SETPTxx is the actual setpoint schedule name. In the program, use
setpointname.OCCHGH when referring to the Occupied High Setpoint
parameter.

In the global dictionary: CONNECT SCHED01 AS A SETPOINT {SETPT01}

In the task: STEP ONE
 IF SCHED01.OCCHGH <> 75 THEN SCHED01.OCCHGH = 75 ENDIF
 DELAY taskname FOR 30
 REPEAT

Use external CONNECTs when connecting to a function (hardware or
software point, configuration or maintenance decision, HVAC function,
system function, schedule, or alarm) in another device. The device you are
connecting to does not have to be on the same bus.

Read the information below to CONNECT to a point in another controller
by variable name. You can connect to the same point name in multiple
controllers using NETWORK_POINT.

CONNECT PTNAME AS A type TO point# IN CCN_element#

where PTNAME is the actual point name as configured in the controller.

type is the point type: AI, AO, DI, or DO.

point# is a unique number greater than 99.

CCN_element# is the system element number of the Comfort
Controller containing the point to which you are CONNECTing.

Externally CONNECTing
To a Point by Variable
Name

FID BEST Syntax

External
CONNECTs

BEST++ Example

63

CONNECT SPT AS A AI TO 101 IN 3
NETWORK_POINT var {CCN_element#, CCN_bus#, PTNAME}

where var is the variable name you are assigning to the point.

CCN_element# is the system element number of the Comfort
Controller containing the function to which you are
CONNECTing.

CCN_bus# is the CCN bus number of the Comfort Controller
containing the point to which you are CONNECTing.

PTNAME is the actual point name as configured in the controller.

NETWORK_POINT SPT AS {2,5,SPT}

Read the information below to CONNECT to a point in another controller
by point number.

CONNECT var AS A type TO point# IN CCN_element#

where var is the variable name you are assigning to the point.

type is the point type: AI, AO, DI, or DO.

point# is the actual hardware or software channel number.

CCN_element# is the system element number of the controller to
which you are CONNECTing.

CONNECT SPT AS A AI TO 8 IN 3

NETWORK_POINT var {CCN_element#,CCN_bus#,,point#}

where var is the variable name assigned to the CONNECTed object.

CCN_element# is the system element number of the Comfort
Controller containing the function to which you are
CONNECTing.

CCN_bus# is the CCN bus number of the Comfort Controller
containing the function to which you are to CONNECTing.

The extra comma is a placeholder for PTNAME.

BEST++ Syntax

BEST++ Example

Externally CONNECTing
To a Point by Point
Number

FID BEST Syntax

FID BEST Example

BEST++ Syntax

FID BEST Example

64

point# is the actual hardware or software channel number.

Note: When CONNECTing to a point by point number in a UT203
FID, add 1 to point#. For example, if CONNECTing to hard-
ware channel 8, point# must be 9.

When CONNECTing to a point by point number in a VVT
Gateway, add 4 to point#. For example, if CONNECTing to
hardware channel 8, point# must be 12.

NETWORK_POINT SPT {2,5,,8}

Read the information below to CONNECT to a decision in a UT203 FID,
32MP Gateway, or VVT Gateway.

CONNECT stptlo AS A DECISION TO table# point#, decision# IN
CCN_element#

where var is the variable name you are assigning to the decision.

table# is the 203 FID or Gateway table associated with the deci-
sion type. Valid 203 FID types are 0 = Global decision, 1 = DO,
2 = AO, 3 = AI, 4 = DI, 5 = PI, 6 = TS, 7 = SS, 8 = HOL. For
32MP Gateway and VVT Gateway information, refer to the respec-
tive Overview and Configuration manuals.

point# is the actual hardware or software channel number.

decision# is the decision number.

CCN_element# is the system element number of the UT203 FID or
Gateway containing the decision to which you are CONNECTing.

CONNECT STPTLO AS A DECISION TO 701, 2 IN 3

UT203 FID: NETWORK_DECISION var {CCN_element#, CCN_bus#,
table#, point#, decision#}

32MP Gateway: NETWORK_DECISION var {CCN_element#,
CCN_bus#, 0, table#, decision#}

VVT GW: NETWORK_DECISION var {CCN_element#, CCN_bus#, 0,
device#, decision#}

BEST++ Example

Externally
CONNECTing to a
Decision in a UT203
FID, 32MP Gateway, or
VVT Gateway
FID BEST Syntax

FID BEST Example

BEST++ Syntax

65

where var is the variable name you are assigning to the decision.

CCN_element# is the system element number of the UT203
FID or Gateway containing the decision to which you are
CONNECTing.

CCN_bus# is the CCN bus number of the UT203 FID or
Gateway containing the decision to which you are
CONNECTing.

table# is the 203 FID or Gateway table associated with the
decision type. Valid 203 FID types are 0 = Global decision,
1 = DO, 2 = AO, 3 = AI, 4 = DI, 5 = PI, 6 = TS, 7 = SS,
8 = HOL. For 32MP Gateway and VVT Gateway information,
refer to the respective Overview and Configuration manuals.

point# is the actual hardware or software channel number.

decision# is the decision number

index# is the index number

NETWORK_DECISION stptlow {3, 0, 7, 1, 2}

Read the information below to CONNECT to a point's decision by
decision name within a Comfort Controller.

Not supported

NETWORK_CONNECT var AS A vartype.decname {CCN_element#,
CCN_bus#, PTNAME}

where var is the variable name you are assigning to the decision.

vartype is the point type. For a list of vartypes, use the Paste
Function Command to display the syntax for CONNECT.
vartypes will appear in the Reserved Word List. For informa-
tion about the Paste Command, refer to the Edit menu sum-
mary in The BEST++ Programmer's Environment chapter.

.decname is name of the decision.

BEST++ Syntax

FID BEST Syntax

Externally
CONNECTing to a
Point's Decision by
Decision Name in a
Comfort Controller

BEST++ Example

66

CCN_element# is the system element number of the Comfort
Controller containing the decision to which you are
CONNECTing.

CCN_bus# is the CCN bus number of the Comfort Controller
containing the decision to which you are CONNECTing.

PTNAME is the actual point name as configured in the
controller.

NETWORK_CONNECT supfan AS A DISC_OUTPUT.FORCE
{3, 0, SUPFAN}

Read the information below to CONNECT to a function's decision in a
Comfort Controller.

Note: It is important to note that you cannot write to Comfort
Controller maintenance decisions. You can, however, read
from Comfort Controller maintenance decisions without
negative consequence.

Not supported

NETWORK_CONNECT var AS A functiontype.subfunction.decname
{CCN_element#, CCN_bus#, FUNCNAME}

where var is the variable name you are assigning to the decision.

functiontype is the algorithm, system function, schedule, or
alarm type. For a list of the functiontypes, use the Paste Func-
tion Command to display the syntax for CONNECT.
Functiontypes will appear in the Reserved Word List. For
information about the Paste Command, refer to the Edit menu
summary in the BEST++ Programmer's Environment chapter.

.subfunction is name of the HVAC or alarm function.

.decname is the name of the maintenance or configuration

BEST++ Example

Externally
CONNECTing to a
Function's Decision in
a Comfort Controller

FID BEST Syntax

BEST++ Syntax

67

decision within the subfunction to which you are
CONNECTing.

CCN_element# is the system element number of the Com-
fort Controller containing the decision to which you wish to
CONNECT.

CCN_bus# is the CCN bus number of the Comfort Control-
ler containing the decision to which you wish to CON-
NECT.

FUNCNAME is the actual name of the algorithm, system
function, schedule, or alarm as configured in the Comfort
Controller.

NETWORK_CONNECT DIALARM AS A
DI_STATE_ALARM.DISTALM.EXCDLIM {3, 0, DSALM01}

1. All variable names established with the CONNECT statement
must be unique within a BEST++ program.

2. Although CONNECT statements can appear anywhere after
the PROGRAM statement in a program, it is good practice to
place all CONNECTs in the global dictionary and send
(download) the global dictionary to the Comfort Controller
before any other programs that reference the CONNECTed
variable names are sent.

3. A connected variable cannot be assigned a value beyond the
range of the point or decision to which it is connected.

For example, if a variable is connected to an AI YSI 10K
Thermistor, it cannot be assigned a value less than -40 or
greater than 244.

4. You can connect to a device on a different bus, i.e., BEST++
can communicate through a bridge.

5. When connecting to an external device, you must use
OUTPUTTO and INPUTFROM to perform the write and read
operations to and from the device.

BEST++ Example

CONNECT Usage
Rules

68

6. If a CONNECT is made to a configuration parameter in
EEPROM, it should not be written to more than once per
hour. EEPROM allows about 100,000 writes to each loca-
tion.

69

When used in a BEST++ statement, the COS (cosine) function
provides the cosine of an angle. The input (x) is the angle, ex-
pressed in radians, subtended by the adjacent side of a right angle
triangle and the hypotenuse. The output (result of COS x) is the ratio
of the adjacent side and the hypotenuse.

COS x

where x is a constant, variable, or mathematical expression.

RATIO = COS (x + .3)

Interpretation: When BEST++ encounters this line in the task, it
adds .3 to x and calculates the cosine of the angle as a number
between -1 and 1.

COS

Syntax

Example

70

When used in a BEST++ statement, the COSH (hyperbolic cosine)
function provides the hyperbolic cosine of a number. The formula
for calculating COSH is:

COSH(c) = (EXP (x) - EXP (-x)) / 2

COSH x

where x is a constant, variable or mathematical expression.

HYPERCOS = COSH (.3)

Interpretation: When BEST++ encounters this line, it calculates the
hyperbolic cosine of .3 as 1.0453.

Syntax

Example 1

COSH

71

This reserved word is used to create a counter that can be
INCREMENTed by a value of 1, DECREMENTed by a value of 1, and
RESET to 0. When BEST++ encounters the name of the counter, it
returns the value currently in the counter. BEST++ can compare this
value to a variable or a constant.

The maximum number to which a counter can count is 65,535. When
the counter reaches this value, it automatically resets to 0.

COUNTER x

where x is the counter name.

Note: The following two methods for incrementing, decrementing,
and resetting x provide the same result. Both methods are
acceptable in BEST++.

COUNTER x VARIABLE x {0}
INCREMENT x x = x + 1
DECREMENT x x = x - 1
RESET x x = 0

COUNTER NUM_CHILLERS

COUNTER

IF CHILLER_STATUS EQ 1 THEN INCREMENT NUM_CHILLERS
ENDIF

Interpretation: When BEST++ encounters the first line, it creates a
counter named NUM_CHILLERS. When BEST++ encounters the
second line and CHILLER_STATUS equals 1 (ON), BEST++
increments NUM_CHILLERS by 1.

COUNTER NUM_CHILLERS
IF NUM_CHILLERS > 0 THEN LEAD_PUMP = 1 ENDIF

Interpretation: When BEST++ encounters the first line, it creates a
counter named NUM_CHILLERS. When BEST++ encounters the
second line and CHILLER_STATUS is greater than zero, BEST++
sets LEAD_PUMP equal to 1 (ON).

Syntax

Example 1

Example 2

72

INCREMENT, DECREMENT, RESET

1. A counter can be created anywhere in a program.

2. A counter cannot be assigned a value.

Invalid:

COUNTER COUNT1
COUNT1 = 90

3. Each counter name must be unique within a given program.

4. Counter names must conform to the rules for variable names.

5. You can create as many counters as you want.

6. Once a counter is created, all further reference to the counter
is by its name.

7. Counters created in the global dictionary can be accessed by
all programs in the controller.

See Also

Usage Rules

73

This reserved word is used to decrease the value of a counter by one.

Note: If you DECREMENT a counter that is equal to 0, its value
will be equal to 65535.

DECREMENT x

where x is the counter name.

DECREMENT COUNTER1

Interpretation: When BEST++ encounters this line, it decreases the
current value of the counter named COUNTER1 by one. Note that
COUNTER1 must have been previously defined as a COUNTER.

COUNTER, INCREMENT, RESET

1. DECREMENT can appear at the beginning of a line, after a
THEN statement, or after a semicolon (;).

2. The name of a counter must immediately follow the word
DECREMENT.

3. The counter specified in the DECREMENT statement must
be defined in the same controller as the DECREMENT
statement.

This reserved word is used in a BEST++ statement to suspend the
execution of a specified task for a user-defined number of seconds.

DECREMENT

Syntax

Example

Usage Rules

See Also

74

When it is encountered, the task is delayed for the specified time and,
after the delay, continues executing at the next program line. DELAY
can be used to delay the task that the statement is in, or to delay another
task.

When the DELAY statement is encountered and executed, the specified
delay time period begins and cannot be reset. When the delay time
expires, the specified BEST++ task continues executing at the line of the
task where it stopped.

The time delay is expressed in seconds (1 through 32767).

DELAY x FOR y

where x is the task name to delay.

y is the number of seconds (wait time) the task is to be
delayed.

DELAY x FOR y
DELAY x (y)
DELAY (x * y)
DELAY x FOR var

DELAY CHILLER FOR 30
DELAY CHILLER (30)
DELAY (CHILLER * 30)
DELAY CHILLER FOR y

Note: where y = any assigned number.

Interpretation: Examples 1 - 4 illustrate the alternate methods for
typing the DELAY statement syntax.

IF SFS EQ 0 THEN TURNON PMP1; DELAY AHU FOR 40;
TURNON PMP2;

DELAY

Syntax

Alternate Syntax

Examples 1 - 4

75

GOTO ONE ENDIF

Interpretation: If SFS is off, then PMP1 will be turned on. The task
named AHU will be inhibited for 40 seconds, and then it will turn
on PMP2. The task will then GOTO Step ONE.

1. Only one BEST++ task name can be specified after the word
DELAY.

2. The BEST++ task that will be DELAYed may or may not be
the same one that contains the DELAY statement.

Before DELAYing another BEST++ task in a different source
file, you must first CONNECT that task. For example:

CONNECT PUMP_TASK AS A TASK {PMPTSK}

TASK ONE
DELAY PUMP_TASK FOR 10
ENDTASK

3. The task that will be DELAYed must reside in the same
controller as the one containing the DELAY statement.

4. Only one wait time can be specified. Specify the wait time in
seconds. Allowable entries are 1 through 32767. Variable
names and mathematical expressions are valid entries.

Note: If a task is to be unconditionally prohibited from
execution, or if the wait time is to be indefinite, use
the HALT statement.

This reserved word is used to define an array name and the number
of elements within the array. An array created using a DIM state-

Example 5

Usage Rules

76

ment can only consist of numbers. BEST++ allows only one dimen-
sional arrays to be created.

The amount of Comfort Controller memory used by an array is
proportional to its size. Each array element uses the same amount
of memory as a variable.

Note: You cannot use a DIM statement to create an array of
hardware and software points. To create an array of
hardware and software points or any other function
(configuration or maintenance decisions, HVAC func-
tions, system functions, schedules or alarms), use an
ARRAY statement.

DIM x{y}

where x is the name of the array.

y is a positive integer that denotes the number of elements in
the array. The allowable entries are 0 to 99; the default
value is 10.

DIM CHILLER{3}
CHILLER[1] = 7; CHILLER[2] = 14; CHILLER[3] = 0
 IF CHILLER[3] EQ 1 THEN GOTO TEN

Interpretation: An array named CHILLER with 3 elements has
been created. The elements are referenced as CHILLER[1],
CHILLER[2], and CHILLER[3].

The first element of the array is assigned the value 7. The second
element of the array is assigned the value 14. The third element of
the array is assigned the value 0.

The value of the third element of the array is compared to the value
1 when this statement is executed. If the value of the third element
is equal to 1, the task is directed to go to step or label TEN.

The value in the third element of the array is 0 and not 1. Therefore,
the task is not directed to go to TEN.

DIM

Example

Syntax

77

Conceptually, this array can be illustrated as follows:

 DIM CHILLER
 Element Value of Element

CHILLER[1] 7
CHILLER[2] 14
CHILLER[3] 0

ARRAY

1. The number of elements in an array must be an integer value
0 to 99.

2. There should be no space between the name of the array and
the number of elements.

3. You cannot assign an array to another array.

4. You must assign each item within an array separately.

Invalid DIM CHILLER[3]
DIM PUMP{3}
CHILLER = PUMP

Valid DIM CHILLER{3}
DIM PUMP{3}
CHILLER[1] = PUMP[1]
CHILLER[2] = PUMP[2]
CHILLER[3] = PUMP[3]

The statement on the right side of the equals sign (=) is
evaluated before being assigned to the array element.

Valid DIM CHILLER {3}
CHILLER [3] = SPT
(where SPT = 75
so CHILLER [3] = 75

DOM is used in BEST++ statements to obtain the Day Of the
Month. Whenever it is encountered, a value from 1 to 31 is pro-

See Also

Usage Rules

78

vided. The value may then be compared to a variable or constant, or
assigned to a variable.

The value assigned to DOM is maintained by the internal calendar
of the Comfort Controller.

DOM operator x

where x is any variable or constant between 1 and 31.

x relational operator DOM
x = DOM

IF DOM > 15 THEN TURNON FAN1 ENDIF

Interpretation: FAN1 is turned on if this statement is executed on
the 16th through the 31st of any month.

SERVCDAY = 15
IF DOM EQ SERVCDAY THEN TURNOFF PUMP1 ENDIF

Interpretation: A variable called SERVCDAY has been assigned
the value 15 and PUMP1 is turned off whenever this statement is
executed on the 15th day of every month.

NOSERVC = DOM
IF NOSERVC EQ 15 THEN TURNON PUMP1 ENDIF

Interpretation: A variable NOSERVC is equal to the current day of
the month and PUMP1 is turned on when the day of the month is the
15th.

1. DOM cannot be assigned a value.

DOM

Syntax

Alternate Syntax

Example 1

Example 2

Example 3

79

For example: DOM = 3 is improper usage. Apart from that,
DOM may appear anywhere in a line of a program.

Note: DOM EQ 3 could be used as a condition to be tested
in an IF... THEN... statement. This is because you
are not actually assigning a value to DOM. You are
only testing to see if DOM is equal to a value.

2. DOM must be preceded or followed by one of the following
operators:

< < = > > = EQ < > = IF

3. If DOM precedes one of the above operators, then a variable,
constant, or mathematical expression must immediately
follow the operator.

4. DOM cannot be used as a variable. In order to operate on the
value of DOM it must be assigned to a variable.
For example: X = DOM.

This reserved word is used in a BEST++ statement to obtain the
numerical value of the Day Of the Week. Whenever it is encoun-

Usage Rules

80

tered, a value from 1 to 7 is provided. This value may then be com-
pared to a variable or constant, or it may be assigned to a variable.

The value assigned to DOW is maintained by the internal calendar of
the Comfort Controller.

Numerical values correlate to days of the week as follows:

1 = Monday 5 = Friday
2 = Tuesday 6 = Saturday
3 = Wednesday 7 = Sunday
4 = Thursday

Note: DOW cannot be used to assign a value to the Comfort Con-
troller clock.

DOW relational operator x or
x relational operator DOW or
x = DOW (used for assignment)

where x is any variable or constant between 1 and 7.

IF DOW > 4 THEN TURNON FAN1 ENDIF

Interpretation: FAN1 is turned on each Friday, Saturday, and Sunday
whenever this statement is executed.

IF DOW EQ 5 THEN TURNOFF FAN1 ENDIF

Interpretation: FAN1 is turned off every Friday when this statement is
executed.

NOWORK = DOW

Interpretation: A variable called NOWORK is assigned the value of
DOW.

1. DOW cannot be assigned a value.

DOW

Syntax

Example 1

Example 2

Example 3

81

For example, DOW = 3 is improper usage. Apart from this,
DOW may appear anywhere in a line of a program.

Note: DOW EQ 3 could be used as a condition to be tested
in an IF... THEN... statement. This is because you
are not actually assigning a value to DOW. You are
only testing to see if DOW is equal to a value.

2. DOW must be preceded or followed by one of the following
operators:

< < = > > = EQ < > = IF

3. If DOW precedes one of the above operators, then a variable,
constant, or mathematical expression must immediately
follow the operator.

4. DOW cannot be used as a variable. In order to operate on the
value of DOW it must be assigned to a variable.
For example: X = DOW.

This reserved word is used in BEST++ statements to obtain the
numerical Day Of the Year. Whenever it is encountered, a value

Usage Rules

82

from 1 to 366 is provided. This value may then be compared to a
variable or constant, or it may be assigned to a variable.

The value assigned to DOY is maintained by the internal calendar of
the Comfort Controller.

DOY relational operator x

x relational operator DOY
x = DOY

IF DOY > 121 THEN TURNOFF PUMP1 ENDIF

Interpretation: PUMP1 is turned off when this statement is ex-
ecuted after May 1st.

IF (DOY > 121) AND (DOY < 305) THEN TURNON FAN1
ENDIF

Interpretation: FAN1 is turned on when this statement is executed
between May 1st and November 1st.

NOWORK = DOY
IF (NOWORK > 358) AND (NOWORK < 364) THEN TURNOFF
FAN ENDIF

Interpretation: FAN is turned off when this statement is executed
between December 24 and December 30.

X = DOY + 30

Interpretation: X is assigned the value DOY + 30.

1. DOY cannot be assigned a value.

DOY

Syntax

Alternate Syntax

Example 1

Example 2

Example 3

Example 4

83

For example, DOY = 3 is improper usage. Apart from this,
DOY may appear anywhere in a line of a program.

Note: DOY EQ 3 could be used as a condition to be tested
in an IF... THEN... statement. This is because you
are not actually assigning a value to DOY. You are
only testing to see if DOY is equal to a value.

2. DOY must be preceded or followed by one of the following
operators:

< < = > > = EQ < > = IF

3. If DOY precedes one of the above operators, then a variable,
constant, or mathematical expression must immediately
follow the operator.

4. DOY cannot be used as a variable. In order to operate on the
value of DOY it must be assigned to a variable.
For example: X = DOY.

This reserved word is used in a BEST++ statement to define the
ending of a group of statements that will be executed together, in

Usage Rules

84

sequence, for a specified number of times.

LOOP x FROM y TO z
ENDLOOP x

where x is the name of the loop.
y is the start value.
z is the end value.

LOOP ONE FROM 1 TO 10
IF ONE > 5 THEN TURNON FAN[ONE]
ELSE TURNOFF FAN[ONE]
ENDIF
ENDLOOP ONE

Interpretation: When BEST++ encounters the LOOP statement, it
executes the lines of the task between the LOOP and ENDLOOP
statements ten times. It then executes the ENDLOOP statement.

LOOP

1. You must terminate a loop with an ENDLOOP statement.

2. The loop name must immediately follow ENDLOOP.

3. You can use the loop name only once in a BEST program.
The following is invalid:

LOOP i FROM 1 TO 10
SUM = SUM + i

ENDLOOP i
LOOP i FROM 7 TO 23

SUM = SUM + i/2
ENDLOOP i

ENDTASK is a reserved word that defines the end of a BEST++
task.

ENDLOOP

Syntax

Example

See Also

Usage Rules

85

ENDTASK

TASK TEMPAVG
STEP ONE
TOTALDEG = POINT1 + POINT2 + POINT3
AVERAGE = TOTALDEG/3
DELAY TEMPAVG FOR 30
REPEAT
ENDTASK

EXIT is a reserved word that causes the BEST++ task in which it
appears to stop running for the current reschedule interval.

ENDTASK

Syntax

Example

86

When this word is encountered, the task immediately stops executing.

The task does not resume execution until it is reactivated or resched-
uled. This can be done with another task containing a RUN or RE-
SCHEDULE statement.

EXIT is similar to the reserved word ENDTASK, which is discussed
later in this chapter.

EXIT

WHEN X > 70
TURNON FAN1
EXIT

Interpretation: When the first statement shown in this example is
encountered, the task waits for X to be greater than 70. When it is,
FAN1 is turned on and the task stops running.

IF TEMP1 > 72 THEN EXIT ENDIF

Interpretation: When this statement is executed, the task is stopped if
the value of TEMP1 is greater than 72 degrees.

EXIT does not require that a task name be specified. It assumes that
the task to be stopped is the one in which it is included.

This function is used in a BEST++ statement to raise the numerical
value of e to the value of a constant, variable, or mathematical expres-

EXIT

Syntax

Example 1

Usage Rule

Example 2

87

sion. EXP is the inverse of LOG.

EXP x

where x is a constant, variable, or mathematical expression.

e = EXP (1)

Interpretation: When BEST++ encounters this line, it calculates
the value of e as 2.71828.

LOG, POWER

EXP

Syntax

Example 1

See Also

88

This reserved word allows a configuration variable to be defined. This
may be useful in a BEST++ task to allow the user to alter the value of a
BEST++ decision from the configuration screen without having to
create and force software points.

FLOAT_CONFIGURATION configname
{name,“description”, units, lowlimit, highlimit, initvalue}

where configname is a unique BEST++ user-configurable name for the
configuration decision.

name is a user-defined, up to 8 character description of the configu-
ration decision.

description is a user-defined, up to 24 character description of the
configuration decision.

units is the engineering unit name or number for the configuration
decision.

lowlimit is the smallest allowable entry.

highlimit is the largest allowable entry.

initvalue is the initial value of the variable configname.

FLOAT_CONFIGURATION setpoint
{SETPOINT, “User Setpoint”, 1, 50, 80, 70}

Interpretation: A configuration point will be created for the program which
will display the value 70 on the configuration screen. The user may change
the value between 50 and 80 and send it to the controller. Any statement
that uses the BEST++ name setpoint will use the last configured value.

1. If name is omitted, the default name of “VALUE” will be
used.

2. If description is omitted, the default description of
“Value” will be used.

 3. Use a quotation mark before and after description if it consists
of spaces or any characters (+, -, etc.).

FLOAT_CONFIGURATION

Syntax

Example 1

Usage Rules

89

This function is used to provide the fractional portion of the argu-
ment. The fractional portion is the numeric value to the right of the
decimal point.

FRACTION (x)

where x is any constant, variable, or mathematical expression.

N = FRACTION (SPT)

Interpretation: When BEST++ encounters this line, it calculates
the value of N. If SPT = 79.61, then N = .61.

REMAIN, ROUNDDOWN, ROUNDUP

FRACTION

Syntax

Example

See Also

90

This reserved word is used in BEST++ statements to control the
sequence of execution within a program.

It tells a BEST++ task to leave the current statement and go to a
named step or label in the same task.

GOTO x

where x is a step or label in the task that contains the GOTO state-
ment.

For information on creating step or label names, refer to STEP in
this chapter and to colon (:) in the Symbols chapter.

GOTO S1

Interpretation: The task is directed to step or label S1.

STEP ONE
IF TEMP1 > 72 THEN GOTO TWO
TURNOFF FAN
GOTO ONE

STEP TWO
TURNON FAN
GOTO ONE

Interpretation: If TEMP1 is greater than 72 degrees when this line
is executed, the execution of the task is directed to step TWO.

1. GOTO may appear anywhere in a task, including the first line
after the task name.

2. The name of a single step or label within the same task must
immediately follow the word GOTO.

GOTO

Syntax

Example 1

Example 2

Usage Rules

91

This reserved word is used in BEST++ statements to stop the execu-
tion of an active task in the assigned Comfort Controller.

The task is stopped immediately. The task does not resume execu-
tion until it is reactivated by a HALT statement.

HALT is similar to the reserved word EXIT, which is discussed
earlier in this chapter.

HALT x

where x is a task in the assigned Comfort Controller.

HALT CHILLER

Interpretation: A task named CHILLER is stopped.

1. HALT must be immediately followed by a single task name.

2. Before HALTing another BEST++ task, you must first CON-
NECT that task in the global dictionary. For example:

CONNECT PUMP_TASK AS A TASK {PMPTSK}
TASK ONE
HALT PUMP_TASK
ENDTASK

HALT

Syntax

Example

Usage Rules

92

The reserved word HOUR is used in BEST++ statements to obtain the
numerical hour of the day. Whenever it is encountered in a task, a
value from 0 to 23 is provided. The value may then be compared to a
variable or constant, or it may be assigned to a variable.

The value assigned to HOUR is maintained by the internal clock of the
Comfort Controller.

Numerical values correlate to the hour of the day as follows:

0 = midnight 12 = noon
1 = 1 a.m. 13 = 1 p.m.
2 = 2 a.m. 14 = 2 p.m.
3 = 3 a.m. 15 = 3 p.m.
4 = 4 a.m. 16 = 4 p.m.
5 = 5 a.m. 17 = 5 p.m.
6 = 6 a.m. 18 = 6 p.m.
7 = 7 a.m. 19 = 7 p.m.
8 = 8 a.m. 20 = 8 p.m.
9 = 9 a.m. 21 = 9 p.m.
10 = 10 a.m. 22 = 10 p.m.
11 = 11 a.m. 23 = 11 p.m.

HOUR relational operator x

where x is any variable or constant between 0 and 23.

x relational operator HOUR
x = HOUR

IF HOUR > 7 THEN TURNON FAN1 ENDIF

Interpretation: FAN1 is turned on each day at or anytime after 7 a.m.

COUNTIME = HOUR

Interpretation: The variable COUNTIME is assigned the current value
of HOUR.

HOUR

Syntax

Alternate Syntax

Example 1

Example 2

93

1. HOUR cannot be assigned a value.

For example: HOUR = 3 is improper usage. Apart from this,
HOUR may appear anywhere in a line of a task.

Note: HOUR EQ 3 could be used as a condition to be
tested in an IF... THEN... statement. This is because
you are not actually assigning a value to HOUR.
You are only testing to see if HOUR is equal to a
value.

2. HOUR must be preceded or followed by one of the following
operators:

< < = > > = EQ < >

3. If HOUR precedes one of the above operators, then a vari-
able, constant, or mathematical expression must immediately
follow the operator.

4. HOUR cannot be used as a variable. In order to operate on
the value of HOUR it must be assigned to a variable.

For example: X = HOUR.

Usage Rules

94

These reserved words are used in BEST++ statements to test or evaluate a
condition before proceeding to take a specified action. The condition may
be a relational or logical expression. IF... THEN... provides task control as
follows:

If the condition is TRUE, then the action is completed. If the condition is
FALSE, the action is not completed and the task will read the ELSE state-
ment if one exists. If an ELSE statement does not exist, the next line after
ENDIF is executed.

IF x THEN y [ELSE statement] ENDIF

where x is any logical or relational expression.

y is any statement(s).

ELSE is an optional statement(s) that executes only when the
IF statement is false.

ENDIF is a reserved word that defines the end of the IF statement.

IF TEMP1 > 72 THEN RUN CHILLER ENDIF

Interpretation: If the value of TEMP1 is greater than 72 degrees when this
line is executed, then a task named CHILLER is activated. If the value of
TEMP1 is less than or equal to 72 degrees, then the task named CHILLER
is not activated and program execution continues with the statement imme-
diately following ENDIF.

IF TEMP1>72 THEN TURNON PUMP1 ELSE TURNOFF PUMP1
ENDIF

Interpretation: If the value of TEMP1 is greater than 72 degrees when this
line is executed, then PUMP1 is turned on. If the value of TEMP1 is less
than or equal to 72 degrees, PUMP1 is turned off.

IF (TEMP1 > 72) OR (TEMP2 > 72) OR (TEMP3 > 72) THEN GOTO S4
ENDIF

Interpretation: If TEMP1, TEMP2, or TEMP3 is greater than 72 degrees
when this line is executed, then the task is directed to S4 of the same
program. If all of the TEMPs are less than or equal to 72 degrees, then the
task does not go to S4. Instead, it executes the statement immediately
following ENDIF.

IF... THEN...
[ELSE...] ENDIF

Syntax

Example 1

Example 2

Example 3

95

IF TEMP1 > 72 THEN PSI = 16; TURNON PUMP1; TURNOFF
PUMP2 ENDIF

Interpretation: If the value of TEMP1 is greater than 72 degrees
when this line is executed, then PSI is assigned the value 16, PUMP1
is turned on, and PUMP2 is turned off. If the value of TEMP1 is less
than or equal to 72 degrees, then the values of PSI, PUMP1, and
PUMP2 remain unchanged.

1. IF must begin a condition statement and must be immediately
followed by a logical expression.

2. The word THEN must follow the IF... expression. No other
statements should be inserted before the THEN expression.

3. When multiple conditions are to be tested, IF is stated only
once, with each additional condition included in the test by use
of one of the following words: AND, OR, or NOT.

4. The ELSE statement is optional. It executes only when the IF
statement is false. If no action is required, the ELSE statement
can be omitted.

5. ENDIF must terminate all IF... THEN... statements.

6. You can nest up to twenty IF... THEN... ENDIF statements.
Refer to the example below.

IF TEMP1 > 72 THEN
IF TEMP2 > 72 THEN

TURNOFF PUMP2
ENDIF
TURNOFF PUMP1

IF TEMP3 > 72 THEN
TURNOFF PUMP3

ENDIF
TURNOFF PUMP4

ENDIF

7. When an IF THEN statement spans more than one line, you
should place the conditional arguments in parentheses ().

Example 4

Usage Rules

96

This reserved word is used to increase the value of a counter by one.

INCREMENT x

where x is the counter name.

INCREMENT COUNTER1

Interpretation: When BEST++ encounters this line, it increases the
current value of the counter named COUNTER1 by one.

COUNTER, DECREMENT, RESET.

1. INCREMENT can appear at the beginning of a line, after a
THEN statement, or after a semicolon (;).

2. The name of a counter must immediately follow the word
INCREMENT.

3. The counter specified in the INCREMENT statement must be
in the same controller as the INCREMENT statement.

INCREMENT

Syntax

Example

See Also

Usage Rules

97

This reserved word is used in BEST++ statements to read the value
of variables that reside in another system element. INPUTFROM is
only valid with variables that have been connected using
NETWORK_CONNECT, NETWORK_POINT and
NETWORK_DECISION.

INPUTFROM x

operation on x, where x is the name of an externally CONNECTed
variable.

NETWORK_POINT OAT {12,0,OAT}

INPUTFROM OAT

IF OAT.STATUS EQ 0 AND OAT >= 75 THEN
TURNOFF FAN

ENDIF

where: 0 = successful communication
 1 = communication is ok, but data is invalid (out of

range, not communicating to Communication bus, or
hardware error)

 2 = Communication ok but couldn't find variable

Interpretation:A connect was made to point OAT of System Ele-
ment #12 on Bus #0. The INPUTFROM causes a network message
to be generated to read OAT. When the response has been received,
if the communication status of OAT (OAT. STATUS) is good and
the value is >= to 75, the fan is turned off.

1. INPUTFROM is only valid with variables that are externally
CONNECTed.

2. INPUTFROM cannot appear on the right side of an assign-
ment. The following example is invalid:

x = INPUTFROM OAT

3. The ?VALUE and ?STATUS flags previously used in BEST
are no longer required.

This reserved word is used in a BEST++ statement to return the

INPUTFROM

Syntax

Example

Usage Rules

98

natural logarithm of a numeric expression. LOG is the inverse of
EXP.

LOG x

where x is any constant, variable, or mathematical expression greater
than zero.

y = LOG (e)

Interpretation: When BEST++ encounters this line, it calculates y
as 1, where e = 2.71828.

The value of x should be greater than zero. If the value of x is less
than zero, the result of LOG x will equal zero.

This reserved word is used in a BEST++ statement to return the

LOG

Syntax

Example

Usage Rules

99

logarithm to the base 10 of a number.

LOG10 x

where x is any constant, variable, or mathematical expression greater
than zero.

POWER = LOG10 5

Interpretation: When BEST++ encounters this line, it calculates
the answer as 10POWER = 5.

POWER = LOG10 Y

Interpretation: When BEST++ encounters this line, it calculates
the answer as 10POWER = Y.

The value of x should be greater than zero. If the value of x is less
than zero, the result of LOG10 x will equal zero.

This reserved word is used in a BEST++ statement to define the

LOG10

Syntax

Example 1

Example 2

Usage Rules

100

beginning of a group of statements that will be executed together, in
sequence, for a specified number of times.

LOOP x FROM y TO z
ENDLOOP x

where x is the name of the loop.
y is the start value.
z is the end value.

LOOP ONE FROM 1 TO 10
IF ONE > 5 THEN TURNON FAN[ONE]
ELSE TURNOFF FAN[ONE]
ENDIF
ENDLOOP ONE

Interpretation: When BEST++ encounters the LOOP statement, it
executes the lines of the task between the LOOP and ENDLOOP
statements ten times. It then executes the ENDLOOP statement.

ENDLOOP

1. A loop name can only be used once in any BEST++ program.

2. The loop count value may be read by referencing the loop
name.

3. You cannot write a value to a loop name.

4. You must terminate a loop with an ENDLOOP statement.

5. The loop name must immediately follow LOOP and
ENDLOOP.

6. You can nest up to twenty LOOP statements. Refer to the
example below.

LOOP I FROM 1 TO 8
 IF PUMP[I] EQ 1 THEN

LOOP J FROM 1 TO 8
TURNON PUMP[J]

ENDLOOP J
 ENDIF
ENDLOOP I

This reserved word is used to return the maximum of two values.

LOOP

Syntax

Example

See Also

Usage Rules

101

MAX (x,y)

where x and y are any constant, variable or mathematical expression.

MAX (x,3)

Interpretation:If x is larger than 3, then the value of MAX is equal to
x. Otherwise, the value of MAX is 3.

MAX (-Y,2*Z)

Interpretation:If -Y is larger than 2 * Z, then the value of MAX is
equal to -Y. Otherwise, the value of MAX is 2 * Z.

The reserved word MINUTE is used in BEST++ statements to obtain

MAX

Syntax

Example 1

Example 2

102

MIN (x,y)

where x and y are any constant, variable or mathematical expression.

MIN (X,3)

Interpretation:If x is smaller than 3 then the value of MIN is equal
to x. Otherwise, the value of MIN is 3.

MIN (-Y,2*Z)

Interpretation:If -Y is smaller that 2 * Z then the value of MIN is
equal to -Y. Otherwise, the value of MIN is 2 * Z.

The reserved word MONTH is used in BEST++ statements to obtain

Syntax

Example 1

Example 2

MIN

103

the numerical value for the minute of the hour. Whenever this word
is encountered in a task, a value from 0 to 59 is provided. This
value may then be compared to a variable or constant, or it may be
assigned to a variable.

The value assigned to MINUTE is maintained by the internal clock
of the Comfort Controller.

MINUTE relational operator x
or

x relational operator MINUTE
or

x = MINUTE
or

y = MINUTE math operator x

where x is any variable or constant from 0 to 59.

IF MINUTE > 15 THEN TURNOFF FAN1 ENDIF

Interpretation: If the number of minutes past the hour is greater
than 15 when this line is executed, then FAN1 is turned off.

DELTIME = MINUTE * 2

Interpretation: The variable DELTIME is assigned twice the value
of MINUTE when this line is executed.

IF (HOUR EQ 8) AND (MINUTE EQ 15) THEN TURNON FAN1
ENDIF

Interpretation: If the time is anywhere from 8:15:00 to 8:15:59
when this line is executed, then FAN1 is turned on.

1. MINUTE cannot be assigned a value.

Syntax

MINUTE

Example 1

Example 3

Example 2

104

For example: MINUTE = 3 is improper usage. Apart from
this, MINUTE may appear anywhere in a line of a task.

Note: MINUTE EQ 3 could be used as a condition to be
tested in an IF... THEN... statement. This is because
you are not actually assigning a value to MINUTE.
You are only testing to see if MINUTE is equal to a
value.

2. MINUTE must be preceded or followed by one of the follow-
ing operators:

< < = > > = EQ < >

3. If MINUTE precedes one of the above operators, then a
variable, constant, or mathematical expression must immedi-
ately follow the operator.

4. MINUTE cannot be used as a variable. In order to operate on
the value of MINUTE it must be assigned to a variable.
For example: X = MINUTE.

This reserved word is used to return the minimum of two values.

Usage Rules

105

the numerical value of the month of the year. Whenever this word is
encountered, a value from 1 to 12 is provided. This value may then
be compared to a variable or constant, or it may be assigned to a
variable.

The value assigned to MONTH is maintained by the internal calen-
dar of the Comfort Controller.

MONTH relational operator x
or

x relational operator MONTH
or

x = MONTH
or

y = MONTH math operator x

where x is any variable or constant from 1 to 12.

IF MONTH > 9 THEN TURNON PUMP1 ENDIF

Interpretation: PUMP1 is turned on when this line is executed after
September.

IF (MONTH < 4) AND (DOW < > 6) THEN TURNON PUMP1
ENDIF

Interpretation: PUMP1 is turned on every day except Saturday
during the months of January, February, and March.

y = MONTH * 2

Interpretation: The variable y is assigned twice the value of
MONTH when this line is executed.

1. MONTH cannot be assigned a value.

MONTH

Syntax

Example 3

Example 2

Example 1

106

For example: MONTH = 3 is improper usage. Apart from
this, MONTH may appear anywhere in a line of a task.

Note: MONTH EQ 3 could be used as a condition to be
tested in an IF... THEN... statement. This is because
you are not actually assigning a value to MONTH.
You are only testing to see if MONTH is equal to a
value.

2. MONTH must be preceded or followed by one of the follow-
ing operators:

< < = > > = EQ < >

3. If MONTH precedes one of the above operators, then a
variable, constant, or mathematical expression must immedi-
ately follow the operator.

4. MONTH cannot be used as a variable. In order to operate on
the value of MONTH it must be assigned to a variable. For
example: X = MONTH.

Usage Rules

107

This logical operator is used in BEST++ statements to invert a
logical condition, or to test for the inverse of a logical condition.
This operator may be used in conjunction with other logical opera-
tors to form one statement.

For analog variables, BEST++ interprets any number other than zero
as TRUE. For discrete variables, ON = TRUE, OFF = FALSE.

NOT x

where x is a condition or variable.

x NOT x

T F
F T

IF NOT PUMPSTAT THEN RUN PUMPCHEK ENDIF

Interpretation: If PUMPSTAT is not ON when this line is executed,
then a task named PUMPCHEK is activated.

IF ((NOT FANSTAT1 OR NOT FANSTAT2) AND NOT
FANOFF) THEN RUN FANSRUN ENDIF

Interpretation: If either FANSTAT1 or FANSTAT2, or both are
not ON, and FANOFF is OFF when this line is executed, then a task
named FANSRUN is activated.

INVX = NOT X

Interpretation: If variable X is nonzero, then variable INVX will be
set to zero. If X is zero, then INVX will be set to 1.

A variable or constant must immediately follow the logical operator
NOT.

NOT

Syntax

Truth Table

Example 1

Example 2

Example 3

Usage Rule

108

This logical operator is used in BEST++ statements to link two or
more logical conditions.

For analog variables, BEST++ interprets a zero as FALSE, and any
number other than zero as TRUE.

x OR y

where x and y are any constant, variable, or expression

x y x OR y

T T T
F T T
T F T
F F F

IF (TEMP1 > 72) OR (TEMP2 > 72) THEN RUN CHILLER
ENDIF

Interpretation: If either TEMP1 or TEMP2 is greater than 72
degrees when this line is executed, then a task named CHILLER is
activated.

1. One logical condition must immediately precede the logical
operator OR.

2. One logical condition must immediately follow the logical
operator OR.

OR

Truth Table

Example

Usage Rules

109

This reserved word is used in BEST++ statements to write to (or
change the value or status of) variables that reside in another system
element. OUTPUTTO is only valid with variables that have been
externally CONNECTed using NETWORK_CONNECT,
NETWORK_POINTS, AND NETWORK_DECISION.

OUTPUTTO x

where x is the name of an externally CONNECTed variable.

NETWORK_POINT FAN {12,0,FAN}

IF OAT >= 75 THEN
TURNOFF FAN
OUTPUTTO FAN

ENDIF

Interpretation:A connect was made to an external point called FAN
of System Element #12 on Bus #0. If the internal variable, OAT, is
>= to 75 then the FAN value is set to 0. The OUTPUTTO causes a
network message to be generated to write the value 0 to FAN.

1. OUTPUTTO is only valid with variables that are externally
CONNECTed.

2. OUTPUTTO cannot appear on the left side of an assignment.
The following example is invalid:

OUTPUTTO FAN = 1.

3. The ?VALUE and ?STATUS flags previously used in BEST
are no longer required.

OUTPUTTO

Syntax

Example

Usage Rules

110

This math function provides the Proportional, Integral, Derivative
control loop. The control loop allows configurable units for the
output value and control inputs. The iteration time for the control
loop is adjustable.

PID x
(enable, setpoint, sensor_input, min_out, max_out, integrator_clamp,
reset_integrator)

{name, “description”, units, kp, ki, kd, dsblout, minout,
maxout, startval, blkrate}

where x is the name of the PID control loop.

the following parameters may be constants, variables or
mathematical expressions:

enable allows the PID to execute when enable = 1.

setpoint defines the setpoint that the PID will calculate to.

sensor_input is the point name that is being controlled.

min_out causes the PID to go to its minimum output
whenever it is not equal to zero.

max_out causes the PID to go to its maximum output
whenever it is not equal to zero.

integrator_clamp causes the integrator to be clamped
whenever it is not equal to zero.

reset_integrator causes the integrator to be reset whenever
it is not equal to zero.

The following parameters define the PID initialization:

name is a user-configurable, up to 8 character name for the
PID. Default: PID

description is a user-configurable, up to 24 character
description for the PID. Default: “PID”

units is the PID's engineering units. Default: 0

kp is the PID's proportional gain (-100 to 100). Default: 0

ki is the PID's integral gain (-100 to 100). Default: 0

kd is the PID's derivative gain (-100 to 100,0). Default: 0

PID

Syntax

111

dsblout is the PID's disabled output value (-9999.99 to
9999.99). Default: 0

minout is the PID's minimum output value (-9999.99 to
9999.99). Default: 0

maxout is the PID's maximum output value (-9999.99 to
9999.99). Default: 0

startval is the PID's starting value (-9999.99 to 9999.99).
Default: 2.

blkrate is the block iteration rate (10 to 300). The
Default: 120.

Interpretation: A PID defined as COOL_PID is enabled if the STA-
TUS maintenance decision for the point defined as space_temp is 0
(OK). The PID uses the high value of the space setpoint to control
space_temp. The integrator is reset if COOLINGVALUE is forced or
has a bad status or if FANST is not on. The output from the PID is
sent to COOLINGVALUE.

1. You must type a name after PID.

2. If you do not type a description, the BEST++ compiler will
use the default name of PID, which is "PID".

3. If the description uses spaces or any reserved characters
(=, -, etc.), then the description must be enclosed in quotes (“).

PID COOL_PID
(NOT (space_temp.STATUS), ~ PID enabled if feedback sensor is OK
sp_setpoint.STPTHI, ~Setpoint
space_temp, ~ Control to space temperature
,,, ~ minimum, maximum reference and

~ clamp integrator
COOLINGVALUE.FORCE OR ~ integrator reset
COOLINGVALUE.STATUS OR
(NOT (FANST)))
{,”PID Loop”, 1, 10, 1.0, 0, 150, 45, 150, 55, 120}

COOLINGVALUE = COOL_PID

Example

Usage Rules

112

This reserved word is used to raise an indicated value (called the
mantissa) by a specified power.

POWER (x,y)

where x is the mantissa, and
y is the exponent.

SQRTTEN = POWER (10,.5)

Interpretation: When BEST++ encounters this statement, it calcu-
lates the value of SQRTTEN as 3.1622777.

EXP and ^

POWER

Syntax

Example

See Also

113

This reserved word defines the name of a BEST++ custom program.
BEST++ automatically inserts the PROGRAM statement when you
create a new program. It is not necessary to edit the PROGRAM
statement.

When tasks are related, you may want to group them into one
program, although it is not necessary. Although a program can
consist of several tasks, each task must begin with a TASK state-
ment and end with an ENDTASK statement.

PROGRAM x {name, description, units}

where x is the user-defined BEST++ custom program name.

name is a user-defined, up to 8 character, uppercase name of
a BEST++ custom program.

description is a user defined, up to 24 character description
for the program.

units is the engineering unit name or number for the pro-
gram. The default is 0, which is "none."

PROGRAM chiller {CHILLER, “Chiller Program”}

Interpretation: A BEST++ program called chiller is defined. Engi-
neering units will not be displayed.

1. PROGRAM must be the first word in any BEST++ program.

2. A PROGRAM statement can be preceded by a REM state-
ment.

PROGRAM

Syntax

Example

Usage Rules

114

This reserved word is used in BEST++ statements to remove the
force on a variable in another system element. RELEASE is only
valid with variables that have been externally CONNECTed using
either NETWORK_POINT or one of the three external FID BEST
CONNECTs.

RELEASE x

where x is the name of a point connected using either
NETWORK_POINT or one of the three external FID BEST
CONNECTs.

NETWORK_POINT FAN {12,0,FAN}

IF OAT >= 75 THEN
TURNOFF FAN
OUTPUTTO FAN

ELSE
RELEASE FAN

ENDIF

Interpretation: A CONNECT was made to an external point called
FAN in System Element #12 on Bus #0. If the internal variable,
OAT, is >= to 75 then the FAN value is set to 0, otherwise, the
RELEASE causes a network message to be generated to AUTO the
FAN.

RELEASE can only remove a BEST++ force or a force of lower
priority on variables residing in a system element other than the one
containing the task with the RELEASE statement.

RELEASE

Syntax

Example

Usage Rule

115

The reserved word REM is used to include remarks or sections of
descriptive text within a source file. Remarks can be inserted into
any source file to help identify the purpose, actions, flow, and
constraint activities of a task. There is no limit to the number of
REM statements that can be used and there are no restrictions to the
characters that may comprise a remark.

Remarks are best used when they can serve as useful information to
others who might use the source file. It is beneficial to explain such
things as the purpose of the task and the variables, or to define how
the steps are used. Any other explanations should also be included
to help others understand the theory behind the task.

The BEST++ language allows two forms of usage for remark state-
ments. These two forms are the reserved word REM and the tilde
(~). For information on the tilde, refer to the Symbols chapter.

Note: Remarks only appear in the source file. When you com-
pile the BEST++ program, the BEST++ compiler removes
all remarks. Remarks are not downloaded to the Comfort
Controller as part of the program.

REM x

where x is the descriptive text (the remark).

REM THIS PROGRAM WAS WRITTEN ON 2/1/96 TO TEST
REM THE OPERATION OF FAN1

IF TEMP1 > 72 THEN TURNON FAN1 ENDIF

REM CHANGE TEST VALUE TO 78 IN SUMMER

IF TEMP1 < 72 THEN TURNOFF FAN1 ENDIF

Interpretation: Three lines of descriptive text accompany a display
or printout of this program. Remarks are not sent to the controller
and will therefore be omitted when the program is uploaded and
decompiled.

REM

Syntax

Example

116

1. It is not necessary to separate the remark statements from
other statements with a blank line. Doing so is purely cos-
metic.

2. There must be at least one space between REM and the
descriptive text.

3. A REM statement does not have to be the only statement on a
line, but it must be the last statement on a line. For example:

x = 72 REM x should never be less than 65.

Usage Rules

117

This reserved word is used to calculate the remainder of x divided
by y.

REMAIN (x,y)

where x and y are any constant, variable, or mathematical expres-
sions greater than zero.

REMAIN (10,3)

Interpretation: When BEST++ encounters this line, it calculates
the remainder of 10 divided by 3 as 1, i.e., 10/3 = 3 remainder 1.

REMAIN

Syntax

Example

118

This reserved word is used to define the end of a step for the pur-
pose of repeating the step. It is always used together with the
reserved word STEP, which defines the beginning of the step.

All statements entered between the words STEP and REPEAT
execute sequentially for as long as the task is directed to remain at
the named step.

REPEAT

STEP ONE
IF PMP1 EQ 1 THEN TURNON PMP2 ENDIF
:TWO
DELAY PUMPS FOR 20
REPEAT

Interpretation: Step ONE of a task named PUMPS says that if
PMP1 is ON, then PMP2 is turned on. The task then delays for 20
seconds. This step continues to repeat. The task can only exit from
the step if a GOTO, EXIT, or HALT statement is included in the
step.

1. REPEAT must always be used together with STEP.

2. REPEAT causes the task to return to the line below the last
occurrence of the reserved word STEP and ignores any labels
that may be in between.

REPEAT

Example

Usage Rules

Syntax

119

This reserved word is used in BEST++ statements to assign the value
0 to a specified timer or counter that is located in the same Comfort
Controller. When a RESET statement is encountered, the named
timer or counter is immediately reset to 0, whether or not it is active.

Timers are typically created to accumulate runtime and provide
delays. Counters are typically created to increment or decrement as
directed by the task.

The value of the timer or counter prior to the RESET is not saved,
unless the current value is assigned to another variable before the
RESET occurs.

RESET x

where x is the name of a single timer or counter.

IF FANTIMER > 3600 THEN RESET FANTIMER ENDIF

Interpretation: If the value of a timer called FANTIMER becomes
greater than 3600 seconds, it is reset to zero.

COUNTER FANCOUNT
IF FANCOUNT > 10 THEN RESET FANCOUNT ENDIF

Interpretation: If the value of a counter called FANCOUNT is
greater than 10, then FANCOUNT is reset to 0.

1. RESET may appear at the beginning of a line, or after a THEN
or a semicolon (;).

2. The name of a single timer or counter must immediately follow
the word RESET.

3. The timer or counter specified in the RESET statement must be
in the same Comfort Controller as the statement.

RESET

Syntax

Example 1

Usage Rules

Example 2

120

This reserved word is used in BEST++ subroutines to terminate
subroutine execution and pass control back to the task that invoked
the subroutine.

RETURN (arg)

where x is the constant, variable, or statement RETURNed to the
CALLing task. The argument is optional.

~ SUBROUTINE to filter a value between a and b
~ x is the value to be filtered
~ if x is less than a then result is 0
~ x increases proportionally from 0 to c between a and b
~ if x is greater than b the result is c
SUBROUTINE FILTER (x,a,b,c)

IF (x < a) THEN
result = 0

ELSE
IF (x > b) THEN

result = c
ELSE

result = (b - a) * (x - a) / c
ENDIF

ENDIF
RETURN (result)
TASK subtest
input = 7
filteredinput = CALL FILTER (input,-5,13.7,100)
ENDTASK

Interpretation: Refer to the remarks in the example.

CALL, SUBROUTINE

If you do not use the argument, you must still type () after the name
of the subroutine.

RETURN

Syntax

Example

Usage Rule

See Also

121

This function is used to express a numerical value as the nearest
whole number (integer) that is less than the stated value.

ROUNDDOWN x

where x is any constant, variable, or mathematical expression.

A = ROUNDDOWN 3.25

Interpretation: When BEST++ encounters this line, the variable A
is set equal to 3 (3.25 down).

B = ROUNDDOWN (3.5 * (10-5))

Interpretation: When BEST++ encounters this line, the variable B
is set equal to 17.5 (the result of the mathematical expression
3.5*(10-5) rounded down).

ROUNDUP

1. x can be any positive or negative number.

2. A negative number is ROUNDDOWN to the next lowest
negative integer value, i.e., ROUNDDOWN (-17.5) = -18.

ROUNDDOWN

Syntax

Example 1

Usage Rules

See Also

Example 2

122

This function is used to express a numerical value as the nearest
whole number (integer) that is greater than the stated value.

ROUNDUP x

where x is any constant, variable, or mathematical expression.

A = ROUNDUP 3.25

Interpretation: When BEST++ encounters this line, the variable A
is set equal to 4 (3.25 rounded up).

B = ROUNDUP (3.5 * (10-5))

Interpretation: When BEST++ encounters this line, the variable B
is set equal to 18 (the result of the mathematical expression 3.5*(10-
5) rounded up).

ROUNDDOWN

1. x can be any positive or negative number.

2. A negative number is ROUNDUP to the next highest negative
integer value, i.e., ROUNDUP (-17.5) = -17.

ROUNDUP

Syntax

Example 1

Example 2

Usage Rules

See Also

123

This reserved word is used in BEST++ statements to activate one or
all of the BEST++ tasks in a Comfort Controller.

If the task commanded to run is inactive, it is immediately activated,
and execution begins at the first statement.

If RUN is applied to a currently active task, the task will continue to
run normally. The RUN statement will have no affect on the task.

RUN x

where x is a single task name.

RUN CHILLER

Interpretation: A task named CHILLER is activated at its first
statement. If the task is already active, execution continues and is
not effected. If the task is not active, execution begins from the first
statement of the task.

If the task you wish to run is not in the same program (source file) as
the RUN statement, you must CONNECT the task before RUNning
it.

Example

RUN

Syntax

Usage Rule

124

This reserved word is used in BEST++ statements to obtain the nu-
merical value for the second of the minute. Whenever this word is
encountered, a value from 0 to 59 is provided. This value may then be
compared to a variable or constant, or it may be assigned to a variable.

The value assigned to SECOND is maintained by the internal clock of
the Comfort Controller.

SECOND relational operator x
or

x relational operator SECOND
or

x = SECOND
or

y = SECOND math operator x

where x is any variable or constant.

IF SECOND > 10 THEN TURNON FAN1 ENDIF

Interpretation: If the number of seconds past the minute is 11 or
greater when this line is executed, then FAN1 is turned on.

IF KW > LIMIT THEN COUNT = SECOND ENDIF

Interpretation: If KW is greater than LIMIT when this line is ex-
ecuted, then the variable COUNT is assigned the value of SECOND.

y = SECOND * 2

Interpretation: The variable y is assigned twice the value of SECOND
when this line is executed.

SECOND

Syntax

Example 1

Example 2

Example 3

125

1. SECOND cannot be assigned a value.

For example: SECOND = 3 is improper usage. Apart from
this, SECOND may appear anywhere in a line of a program.

Note: SECOND EQ 3 could be used as a condition to be
tested in an IF... THEN... statement. This is because
you are not actually assigning a value to SECOND.
You are only testing to see if SECOND is equal to a
value.

2. SECOND must be preceded or followed by one of the follow-
ing operators:

< < = > > = EQ < >

3. If SECOND precedes one of the above operators, then a
variable, constant, or mathematical expression must immedi-
ately follow the operator.

4. SECOND cannot be used as a variable. In order to operate on
the value of SECOND it must be assigned to a variable. For
example: x = SECOND.

Usage Rules

126

When used in a BEST++ statement, the SIN (sine) function provides
the sine of an angle expressed in radians.

SIN x

where x is a constant, variable, or mathematical expression.

RATIO = SIN (X - .3)

Interpretation: When BEST++ encounters this line in the program,
it subtracts .3 from x and calculates the sine of the angle as a num-
ber between -1 and 1.

SIN

Syntax

Example

127

When used in a BEST++ statement, the SINH (hyperbolic sine)
function provides the hyperbolic sine of a number. The formula for
calculating SINH is:

SINH (x) = (EXP (x) - EXP (-x)) / 2

SINH x

where x is a constant, variable, or mathematical expression.

HYPERSINE = SINH (.3)

Interpretation: When BEST++ encounters this line, it calculates
the hyperbolic sine of .3 as 0.3045.

SINH

Syntax

Example

128

This function is used in BEST++ statements to calculate the positive
square root of the constant, variable, or mathematical expression
immediately following it. The square root of positive real or integer
values can be calculated.

SQRT x

where x is any positive constant, variable, or mathematical expression.

SQRT 16

Interpretation: The square root of 16 (4) is calculated.

SQRT VP

Interpretation: The square root of a variable named VP is calculated.

TVAL = SQRT (TEMP1 - TEMP2)

Interpretation: TVAL is assigned the value of the square root of the
difference between TEMP1 and TEMP2.

1. SQRT may appear anywhere in a line of program.

2. If SQRT is followed by a mathematical expression, the use of
parentheses ensures proper order of evaluation.

3. Attempting to calculate the square root of a negative number
results in a value of 0.

SQRT

Syntax

Example 1

Example 2

Example 3

Usage Rules

129

This reserved word is used in BEST++ statements to activate a
specified timer that is located in the same Comfort Controller. The
named timer immediately starts when the command is issued.

Timers are used to accumulate a length of time in seconds. Typi-
cally, they are created to accumulate runtime.

The timer starts counting from its last value. The value of a stopped
timer is retained in the timer until it is set to zero with the RESET
command or until it is started again.

Note: This command is only used to start timers created using
the reserved word TIMER. It does not turn on output
devices.

START x

where x is any timer.

START TIMER1

Interpretation: A timer named TIMER1 will commence counting,
beginning from the last value in the timer.

1. START may appear anywhere in a line of program.

2. START can only be applied to a single timer at a time.

3. The timer that is started must be in the same Comfort Con-
troller as the BEST++ program that starts it.

4. If x is an active timer, then START x has no effect.

START

Syntax

Example

Usage Rules

130

This reserved word is used in BEST++ statements to define the
beginning of a portion of a program. It is good practice to break up
long programs into smaller parts, or steps.

STEP is typically used with REPEAT. All statements entered
between the word STEP and the word REPEAT are executed se-
quentially for as long as the program is directed to remain at the
named step.

The only way to have the program execute statements outside of a
step that includes the word REPEAT is to include a GOTO in the
step.

A step name can also be used as the target of a GOTO statement.

Note: You can also use labels (designated by the symbol :) to
define sections of a program and as a target of a GOTO
statement. For information on labels, refer to the Symbols
chapter.

STEP x

where x is the name of the step.

TASK RUNCOUNT
STEP ONE
COUNTER = COUNTER + 1
DELAY RUNCOUNT FOR 60
REPEAT

Interpretation: In RUNCOUNT the variable COUNTER is
incremented by one and the program is delayed for 60 seconds.
Then, the REPEAT statement returns the execution sequence to the
previous step name, which is STEP ONE.

STEP

Syntax

Example 1

131

TASK CNTR
STEP SIX
COUNTER = COUNTER + 1
DELAY CNTR FOR 10
IF COUNTER < 60 THEN GOTO SIX

Interpretation: In CNTR the counter is incremented by one, and the
program is delayed for 10 seconds. If the value of COUNTER is
less than 60, then the program execution is directed back to STEP
SIX by the GOTO statement. When the value of COUNTER is 60
or greater, the program execution continues to the next statement in
the program sequence.

1. STEP must be the only reserved word in a line of program.

2. Step names must conform to the rules for variable names.

Example 2

Usage Rules

132

This reserved word is used in BEST++ statements to deactivate a
specified TIMER located in the same Comfort Controller. The
named TIMER immediately stops when the command is issued.
STOP is used in conjunction with START.

Timers are used to accumulate time in seconds. Typically, they are
created to accumulate runtime.

The value of a stopped timer is retained in the timer until it is started
again or reset.

Note: This command is used only to stop timers created using
the reserved word TIMER. It does not turn off output
devices.

STOP x

where x is the name of a timer.

STOP TIMER1

Interpretation: A timer named TIMER1 ceases counting, remaining
at the last value accumulated unless it is subsequently reset to zero.

1. STOP may appear anywhere in a line of program.

2. STOP can only be applied to a single timer at a time.

3. The timer must be in the same Comfort Controller as the
program that stops it.

STOP

Syntax

Example

Usage Rules

133

This reserved word defines the beginning of a subroutine. A
subroutine is a subprogram that consists of a series of statements
that may be required in several places in a task or tasks. Instead of
typing the commands several times, a subroutine can be written and
invoked whenever needed.

SUBROUTINE x (arg1,arg2,arg3,arg4)

where x is the name of the SUBROUTINE.
arg1, arg2, arg3, and arg4 are values passed to the
subroutine by the CALL statement.

~ SUBROUTINE to filter a value between a and b
~ x is the value to be filtered
~ if x < a then result equals b
~ if x > = a then result equals c

SUBROUTINE FILTER (x,a,b,c)
IF x < a THEN

result = b
ELSE

result = c
ENDIF

RETURN (result)
TASK subtest
input = 7
filteredinput = CALL FILTER (input,-5,13.7,100)
ENDTASK

Interpretation: Refer to the remarks in the example.

CALL, RETURN

1. The SUBROUTINE must be either in the same program as
the CALLing task (before the calling task) or in the global
dictionary.

2. SUBROUTINE must be followed by a subroutine name.

3. A SUBROUTINE must end with a RETURN statement.

4. A subroutine executes as if it were a single statement. No
other programs in the controller will execute until the subrou-
tine returns to the calling task.

SUBROUTINE

Syntax

Example

See Also

Usage Rules

134

This function defines a named variable based on the value of a boolean
operation or the result of a true or false condition. The variable (n) is set
to the first variable or constant (x) if the boolean operation or true/false
condition (z) is false. If z is true, n is set to y.

SWITCH n (x, y, z)

where n is the name of the switch.
x and y are any constants or variables.
z is a boolean operation or the result of a true or false condition.

SWITCH OFFSET_TEMP (-3, -10, LIMIT_TEMP > 60)
x = OFFSET_TEMP

Interpretation: When BEST++ encounters this line, x will be set to
-10 if LIMIT_TEMP is greater than 60. If LIMIT_TEMP is less than
or equal to 60, x will be set to -3.

SWITCH

Syntax

Example

135

When used in a BEST++ statement, the TAN (tangent) function
provides the tangent of an angle.

TAN x

where x is a constant, variable, or mathematical expression.

RATIO = TAN (π/4) = TAN (.7853981)=1

Interpretation: When BEST++ encounters this line, it calculates
the tangent of -π/4 as 1.

TAN

Syntax

Example

136

When used in a BEST++ statement, the TANH (hyperbolic tangent)
function provides the hyperbolic tangent of a number.

TANH x

where x is a constant, variable, or mathematical expression.

HYPERTAN = TANH (.3)

Interpretation: When BEST++ encounters this line, it calculates
the hyperbolic tangent of 0.3 as 0.29131.

TANH

Example

Syntax

137

This reserved word defines the beginning of a BEST++ task. A task
is a sequence of statements used to perform particular actions or
calculations. A statement is a combination of BEST++ reserved
words, mathematical functions, operators, symbols, variables, and
constants. Several tasks may be entered in one program.

TASK x

where x is the name of the task.

TASK x
{TASKNAME,“description”,priority,forcepri,reschrat,reschpor}

where TASKNAME is the user-configurable, up to 8 character task
name.

“description” is the user-configurable, up to 24 character
task description. The default is “PROGRAM”.

priority is a numeric value between 1 and 5, indicating the
order in which tasks will execute. The highest priority is 1.
Tasks and functions with a priority of 1 will execute first.
Tasks and algorithms with a priority of 5 will execute last.

You can assign different priorities to tasks within the same
program. For example, you can write five tasks in one
program and assign each task a different priority ranging
from 1 to 5. If you assign the same priority to more than one
task, BEST++ will execute Line 1 of each of the tasks,
followed by Line 2 and so on. Once BEST++ executes all
tasks of the same priority, it then executes tasks of the next
highest priority.

If all the tasks have the same priority, a shorter task will
execute more often.

forcepri is the level of the Comfort Controller force priority.
For a list of force priorities and their descriptions, refer to
Appendix A in this manual. The levels range from 1 to 10,
with 1 being the highest level. The default is 8, which is a
BEST++ force. For information on removing forces, refer to
AUTO and RELEASE in this chapter.

TASK

Syntax

Alternate Syntax

138

When forcing variables over the CCN network, all writes will cause
BEST forces (forcepri = 8) regardless of what forcepri is set to.

reschrat is the rate (in seconds) at which the task
automatically runs.

reschpor is the amount of time that must elapse after
a download or Power On Reset (POR) occurs before the task
will repeat.

CONNECT OAT AS A TEMP_INPUT {OAT}
CONNECT FAN AS A DISC_OUTPUT {FAN}

TASK SAMPLE

REM THIS PROGRAM CONTROLS THE COOLING FAN

STEP ONE
IF OAT > 70 AND FAN EQ 0 THEN TURNON FAN; COUNT =
COUNT + 1 ENDIF
IF OAT < 68 AND FAN EQ 1 THEN TURNOFF FAN ENDIF
REPEAT

ENDTASK

Interpretation: Because SAMPLE follows TASK, the program’s
name is SAMPLE. Note that TASK is the first word of the first line
of the task.

1. TASK must be followed by a task name.
2. A task must end with an ENDTASK statement. (ENDTASK

must be the last statement).

Usage Rules

Example

139

This reserved word is used to create and name a clock (a timer). When
the named timer is encountered, its current value can be read and then
compared to a variable or constant, or assigned to a variable.

A timer can be used to accumulate runtimes or provide a time delay.
Once the timer has been named, it can be started, stopped, or reset to 0
using the START, STOP, and RESET statements.

A timer can count up to 4,294,967,295 seconds and then automatically
resets to 0 and continues incrementing.

TIMER x {0}
where x is the timer name

{0} = seconds
{1} = minutes
{2} = hours
default = {0}

TIMER PUMPRUN
IF PUMP1 EQ 1 THEN START PUMPRUN ENDIF

Interpretation: A timer named PUMPRUN is created. If PUMP1 is
equal to 1 (ON), then the timer named PUMPRUN begins incrementing
seconds from 0.

TIMER RTIM {1}
START RTIM

Interpretation: A timer named RTIM is created. RTIM is started and
begins incrementing minutes from 0.

1. A timer can be created anywhere in a program.

2. A timer is not incremented until the elapsed seconds, minutes, or
hours has expired.

3. The word TIMER must be followed by the timer name.

4. Each timer name must be unique within a given program.

5. A timer must be started in order for it to begin incrementing.

6. A timer can be started repeatedly without affecting its count.

TIMER

Syntax

Example 1

Example 2

Usage Rules

140

These two reserved words are used in BEST++ statements to com-
mand a specified discrete output device ON or OFF.

Note: The specified device can only be a properly connected
internal discrete output point or network point.

BEST++ interprets the logical value of 1 to be equal to the word
TURNON. It interprets the logical value of 0 to be equal to the
word TURNOFF. (See Usage Rule 4 below.)

Caution: Do not confuse these statements with the START and
STOP statements. START and STOP can only be
applied to a timer.

TURNON x or TURNOFF x

where x is a connected discrete output point in the same controller
as the task. If the device is in another controller, the TURNON/
TURNOFF command must be followed by an OUTPUTTO state-
ment (refer to OUTPUTTO in this section).

IF TEMP < 72 THEN TURNON PUMP1 ENDIF

Interpretation: PUMP1 is turned on if the temperature is less than
72 degrees.

1. TURNON and TURNOFF may appear at the beginning of a
line, or after THEN or a semicolon (;).

2. TURNON and TURNOFF must be immediately followed by
a specified internally connected discrete output point or
network point.

3. TURNON and TURNOFF can only be applied to one device
at a time.

4. The following is an alternative to using TURNON and
TURNOFF:

FAN = 1 (turns FAN on)
FAN = 0 (turns FAN off)

5. You cannot TURNON or TURNOFF a discrete input point.

TURNON/TURNOFF

Syntax

Example

Usage Rules

141

This reserved word is used in BEST++ statements to cause a vari-
able CONNECTed to a NETWORK_INPUT to read data or a
variable CONNECTed to a NETWORK_OUTPUT to write data.

UPDATE x

operation on x, where x is the name of an externally connected
variable.

CONNECT OAT as a NETWORK_INPUT {REMOTEOAT}

UPDATE OAT
IF OAT.STATUS EQ 0 AND OAT >75 THEN

TURNOFF FAN
ENDIF

Interpretation: A CONNECT was made to point REMOTEOAT,
which is a NETWORK_INPUT. The UPDATE causes the
NETWORK_INPUT to read the data from its specified CCN point
if the CCN rate has expired. If the CCN rate has not expired, the
last read value is reused.

1. UPDATE is valid only with NETWORK_INPUT and
NETWORK_OUTPUT.

2. UPDATE cannot appear on the right side of an argument.
The following is invalid:

x = UPDATE OAT.

UPDATE

Syntax

Example

Usage Rules

142

This reserved word is a symbolic name that you specify to represent
a value to be used in the program you are currently writing or edit-
ing. If you want to use the variable in more than one program and
maintain its definition, you must define the variable in the global
dictionary. This type of variable is a global variable.

Note: If you use the same variable name in multiple programs
without defining it in the global dictionary, the variable
can have a different meaning in each of the programs.
This type of variable is a local variable.

Any name that you use in a BEST++ program that is not
CONNECTed is assumed to be a variable.

A BEST++ variable can represent a value written with or without a
decimal point. A value may be in customary US or metric engineer-
ing units. For information on how to specify engineering units, refer
to Appendix B in this manual.

VARIABLE x {y}

where x is the variable name, and
y is the initial value (starting value) of x.

Note: Including the initial value is optional. If you do not specify
an initial value, BEST++ will use the default value of 0.

VARIABLE NUM_CHILLERS {10}

Interpretation: When BEST++ encounters this line, it creates a
variable named NUM_CHILLERS with an initial value of ten.

VARIABLE NUM_CHILLERS

Interpretation: When BEST++ encounters this line, it creates a
variable named NUM_CHILLERS with an initial value of zero.

VARIABLE

Syntax

Example 1

Example 2

143

This reserved word is similar to the IF... THEN... statement, in that
it tests for a specific condition. However, this statement prohibits
further execution of the program until the expected condition exists.

When the condition is true, the program is allowed to proceed.

Caution: Careful consideration should be given to the use and
placement of the WHEN statement. WHEN causes the
program to wait until the condition is TRUE.

WHEN x relational operator y

where x and y are variables or constants.

TASK FIRECTRL

WHEN FIRE1 EQ 1
TURNON HALON1
HALT FANS
RUN ALARMF1

IF SPT1 > 240 THEN TURNON SPKLR1

ENDTASK

Interpretation: The program FIRECTRL waits at the line WHEN
FIRE1=1 until a sensor indicates a fire. The indication of a fire
allows the program to proceed.

TASK COOL

WHEN ((FAN1 EQ 1 AND FAN2 EQ 1) OR FAN4 EQ 1
TURNON FAN3)

ENDTASK

Interpretation: The program COOL waits at the line WHEN
(FAN1 = 1 AND FAN2 = 1) OR FAN4 = 1 until both FAN1 and
FAN2 are ON or FAN4 is ON. When either condition tests true, the
program proceeds to the next line, which is to turn on FAN3.

WHEN

Syntax

Example 1

Example 2

144

1. The reserved word WHEN must be immediately followed by
a logical expression.

2. If multiple conditions are to be tested, the word WHEN
should only be stated once. Each additional condition is
included in the test by the reserved words AND, OR, or NOT.

Usage Rules

145

This logical operator calculates the exclusive OR of two operands. If
the operands are logically the same, the result is false (0). If the
operands are not logically the same, the result is true (1).

x XOR y

where x and y are any constant, variable, or mathematical expression.

Inputs Outputs
x y z

0 0 0
1 0 1
0 1 1
1 1 0

Y = (X - 3) XOR 1

Interpretation: When BEST++ encounters this line, it calculates Y as
0 when X = 4. When X equals any other number, Y = 1.

XOR

Truth Table

Example

Syntax

146

Mathematical and
Relational Operators

147

This chapter discusses each mathematical and relational operator
used in BEST++.

The third type of operator, the logical operator, is discussed in the
Reserved Words, Logical Operators, and Functions chapter.

Within a statement, mathematical operators are executed first, then
relational operators, and logical operators are done last.

The following operators are used in the BEST++ language to per-
form mathematical processes. They are listed in order of precedence
of execution in a statement.

^ (exponentiation)
/ (division)
* (multiplication)
- (subtraction or negation)
+ (addition)

BEST++ uses relational operators to perform comparisons. All
relational operators have the same precedence and, therefore, are
executed from left to right in any single statement.

The single-character relational operators are:

< (less than)
> (greater than)

In some cases, it is necessary to type two characters together in
order to represent a single relational operator. These characters must
be typed as shown to work correctly. The two-character operators
are:

EQ (equal to)
< = (less than or equal to)
> = (greater than or equal to)
< > (not equal to)

Mathematical
and Relational
Operators
About this
Chapter

Order of
Execution

Mathematical
Operators

Relational
Operators

148

The exponentiation sign (^) is a mathematical operator that raises a
number to a power.

x ^ n

where x is the base, and may be any variable, constant, or math-
ematical expression.

n is the exponent and may be any variable or constant with a
positive integer value.

Note: If n is a real value, the fractional portion is trun-
cated before the computation takes place.

AREA = SIDE ^ 2

Interpretation: AREA is assigned the value of SIDE raised to the
second power (SIDE ^ 2 = SIDE * SIDE).

The exponentiation sign must be preceded by the variable, constant,
or expression that is to be raised to a power and followed by the
integer, variable, or constant that specifies the power.

^ (Exponentiation)

Syntax

Example

Usage Rule

149

The division sign (/) is a mathematical operator used for dividing
one value by another.

x / y

where x is the dividend and may be any variable, constant, or
mathematical expression.

y is the divisor and may be any variable, constant, or math-
ematical expression with a nonzero value.

RUNHOUR = RUNMINUT/ 60

Interpretation: RUNHOUR is assigned a value 1/60th the value of
RUNMINUT.

DIVAL = (X - 1) / (Y + 2)

Interpretation: The value of X - 1 is divided by the value Y + 2 and
the resulting value is assigned to DIVAL.

1. The division sign must be placed between the divisor and the
dividend. The value that precedes the division sign is divided
by the value that follows it.

2. Spaces are permitted before and after the division sign.

3. Any number divided by zero will return zero (0).

/ (Division)

Syntax

Example 1

Example 2

Usage Rules

150

The multiplication sign (*) is a mathematical operator used for
multiplying two variables, constants, or mathematical expressions.

x * y

where x and y are any variables, constants, or mathematical expres-
sions.

PUMP1RUN = PUMP2RUN * 2

Interpretation: PUMP1RUN is assigned twice the value of
PUMP2RUN.

MULTVAL = (X + 1) * (Y - Z)

Interpretation: The value of X + 1 is multiplied by the value Y - Z
and the resulting value is assigned to MULTVAL.

1. The multiplication sign must be placed between the variables,
constants, or expressions that are to be multiplied.

2. Spaces are permitted before and after the multiplication sign.

* (Multiplication)

Syntax

Example 1

Example 2

Usage Rules

151

The subtraction sign (-) is a mathematical operator used for subtract-
ing one value from another.

x - y

where x and y are any variables, constants, or mathematical expres-
sions.

ERROR = SETPOINT - TEMP

Interpretation: ERROR is assigned a value equal to the value of
SETPOINT minus the value of TEMP.

SUBVAL = (X * 12) - (Y ^ 2)

Interpretation: The value Y ^ 2 is subtracted from the value X * 12,
and the resulting value is assigned to SUBVAL.

1. The subtraction sign must be placed between the variables,
constants, or expressions that are to be subtracted.

The value that follows the subtraction sign is subtracted from
the value that precedes it.

2. Spaces are permitted before and after the subtraction sign.

- (Subtraction)

Syntax

Example 1

Example 2

Usage Rules

152

The negative sign (-) is a mathematical operator used to indicate a
negative quantity. A negative sign can be used with a constant, variable,
or mathematical expression.

-x

where x is any variable, constant, or mathematical expression.

y = -10

Interpretation: BEST++ assigns y the value of negative 10 (y = 0 - 10).

z = N * (-L)

Interpretation: z is assigned the value of N multiplied by negative L.

Note: If the value of L is less than zero, then negative L will be
greater than zero.

z = -(x + y)

Interpretation: z is assigned the value of negative the sum of x and y.

A space is permitted between the negative sign and the constant, vari-
able, or expression it is negating.

- (Negation)

Syntax

Example 1

Example 2

Example 3

Usage Rule

153

The addition sign (+) is a mathematical operator used for adding
two values together.

x + y

where x and y are any variables, constants, or mathematical expres-
sions.

TOTALRUN = RUNTIM1 + RUNTIM2

Interpretation: TOTALRUN is assigned the value of RUNTIM1
plus RUNTIM2.

ADDVAL = (X * 4) + (Y - 2)

Interpretation: The value X * 4 is added to the value Y - 2, and the
resulting value is assigned to ADDVAL.

1. The addition sign must be between the variables, constants, or
expressions that are to be added.

2. Spaces are permitted before and after the addition sign.

+ (Addition)

Syntax

Example 1

Example 2

Usage Rules

154

The less than sign (<) is a relational operator used to compare two
values. The comparison yields a value of TRUE if the value to the
left of the sign is less than the value to the right of the sign.

x < y

where x and y are any variables, constants, or mathematical expres-
sions.

IF TEMP1 < TEMP2 THEN RUN HEATER ENDIF

Interpretation: A task named HEATER runs if TEMP1 is less than
TEMP2 when this statement is executed.

1. The less than sign must be between the variables, constants,
or expressions that are to be compared.

2. Spaces are permitted before and after the less than sign.

< (Less Than)

Syntax

Example

Usage Rules

155

The less than or equal to sign (< =) is a relational operator used to
compare two values. The comparison yields a value of TRUE if the
value to the left of the sign is either less than or equal to the value to
the right of the sign.

x < = y

where x and y are any variables, constants, or mathematical expres-
sions.

IF TEMP1 - 4 < = TEMP2 THEN RUN HEATER ENDIF

Interpretation: If the value of TEMP1 - 4 is less than or equal to
TEMP2, then a task named HEATER runs when this statement is
executed.

1. The less than or equal to sign must be between the variables,
constants, or expressions that are to be compared.

2. Spaces are permitted before and after <=.

3. Spaces are not permitted between < and =.

< = (Less Than or
Equal To)

Syntax

Example

Usage Rules

156

The not equal to sign (< >) is a relational operator used to compare
two values. The comparison yields a value of TRUE if the two
values are not equal.

x < > y

where x and y are any variables, constants, or mathematical expres-
sions.

IF STATUS < > 1 THEN HALT RUNTIME ENDIF

Interpretation: If the value of STATUS is not equal to 1 when this
statement is executed, then a task named RUNTIME is halted.

1. The not equal to sign must be between the variables, con-
stants, or expressions that are to be compared.

2. Spaces are permitted before and after < >.

3. Spaces are not permitted between < >.

< > (Not Equal To)

Syntax

Example

Usage Rules

157

The greater than sign (>) is a relational operator used to compare two
values. The comparison yields a value of TRUE if the value to the left
of the sign is greater than the value to the right of the sign.

x > y

where x and y are any variables, constants, or mathematical expres-
sions.

IF MONTH > 9 THEN TURNON PUMP1 ENDIF

Interpretation: If the value of MONTH is greater than 9 (that is, 10,
11, or 12) when this statement is executed, then PUMP1 is turned on.

1. The greater than sign must be between the variables, constants,
or expressions that are to be compared.

2. Spaces are permitted before and after the > sign.

> (Greater Than)

Example

Syntax

Usage Rules

158

The greater than or equal to sign (> =) is a relational operator used
to compare two values. The comparison yields a value of TRUE if
the value to the left of the sign is greater than or equal to the value
on the right of the sign.

x >= y

where x and y are any variables, constants, or mathematical expres-
sions.

IF MONTH >= 9 THEN TURNON PUMP1 ENDIF

Interpretation: If MONTH is greater than or equal to 9 (that is, 9,
10, 11, or 12) when this statement is executed, then PUMP1 is
turned on.

1. The greater than or equal to sign must be between the vari-
ables, constants, or expressions that are to be compared.

2. Spaces are permitted before and after >=.

3. Spaces are not permitted between > and =.

> = (Greater Than
or Equal To)

Syntax

Example

Usage Rules

159

The equal to symbol (EQ) is a relational operator used to compare
two values. The comparison yields a value of TRUE if the two
values are mathematically equal.

Note: Do not confuse this relational operator with the math-
ematical operator =, which is used to assign a value to a
variable.

x EQ y

where x and y are variables, constants, or mathematical expressions.

IF TMR1 EQ 60 THEN TURNOFF FAN1 ENDIF

Interpretation: If the value of TMR1 is equal to 60 when this
statement is executed, then FAN1 is turned off.

1. The equal to symbol must be between the variables, con-
stants, or expressions that are to be compared.

2. Spaces are required before and after the equal to symbol.

EQ (Equal To)

Usage Rules

Example

Syntax

160

Symbols

161

Symbols

This chapter familiarizes you with BEST++ symbols. Symbols are
listed according to their priority of execution. A description of and
syntax for each symbol is presented along with examples and usage
rules.

This symbol is used to assign a value to a variable.

x = y

where: x is a variable name, and

y is any variable, constant, or mathematical expression.

AVTEMP = (TEMP1 + TEMP2 + TEMP3) / 3

Interpretation: When this statement is executed the mathematical
expression AVTEMP = (TEMP1 + TEMP2 + TEMP3) / 3 is evalu-
ated and the resulting value is assigned to the variable AVTEMP.

1. A single variable name must be placed before the mathemati-
cal assignment symbol.

2. A valid variable, constant, or mathematical expression must
be placed after the mathematical assignment symbol.

3. Spaces are permitted before and after the mathematical
assignment symbol.

Note: Do not confuse this mathematical operator with the rela-
tional operator EQ. EQ cannot be used to assign a value to
a variable. EQ is used to compare two values.

About this
Chapter

= (Mathematical
Assignment)

Syntax

Example

Usage Rules

162

This symbol is used to separate values or serve as a placeholder for
a value in statements.

For the syntax, usage rules, and examples of how the comma is
used, refer to Use of Commas in the Statements chapter.

, (Comma)

163

Parentheses are used as a grouping symbol — what is between them is
to be treated as a quantity.

Parentheses are also used to create or alter the order in which BEST++
mathematical and logical operators are evaluated. Operators inside
parentheses are evaluated before operators outside parentheses. When
parentheses are nested, the inner parentheses are evaluated first, and
outer parentheses are evaluated last.

(x)
where x is a mathematical or logical expression.

z = (x + 2) * z

Interpretation: The operator +, which appears inside the parentheses, is
evaluated before the operator * , which is outside the parentheses.

Note: This changes BEST++’s normal sequence of evaluation,
which puts multiplication before addition.

IF X AND (Y OR Z) THEN W = 0 ENDIF

Interpretation: The operator OR, which appears inside the parentheses,
is evaluated before the operator AND, which is outside the parentheses.

Note: This changes BEST++’s normal sequence of evaluation,
which evaluates AND before OR.

N = ((X + 2) * (Y-1)) / M

Interpretation: The quantities in the inner parentheses (X + 2) and
(Y - 1) are evaluated first, then the operation in the outer parentheses
(multiplication) is performed.

Note: This changes BEST++’s normal sequence of evaluation,
which is multiplication — division — subtraction — addition.

1. Parentheses must be used in pairs. Each left parenthesis must
have one matching right parenthesis and vice versa.

2. Parentheses may be nested, i.e., pairs of parentheses may appear
within other pairs of parentheses.

() (Parentheses)

Syntax

Example 1

Example 2

Example 3

Usage Rules

164

Array parentheses are used to define the arguments of an array. You
define arrays of numbers using the DIM keyword. You define
arrays of points, functions, schedules or alarms using the ARRAY
keyword.

[x]

where x is a number, variable, or mathematical expression.

z = A[3+i]

Interpretation: The (3+i)th element of the array A is assigned to the
variable z.

A[9]=25

Interpretation: The 9th element of the array A is set to 25.

1. Array parentheses must be used in pairs.

2. Array parentheses may be nested, i.e., pairs of parentheses
may appear within other pairs.

[] Array
Parentheses

Usage Rules

Syntax

Example 1

Example 2

165

This symbol is used to designate a label name. Labels can be used
to define sections of a task. They can also be the target of a GOTO
statement. Unlike step names, however, labels cannot be used in
conjunction with REPEAT.

: x

where x is the label name.

TASK CTRL

STEP S1
IF (TEMP > 78) THEN GOTO LBL1
TURNON FAN; TURNON PUMP
GOTO LBL2

:LBL1
TURNOFF FAN; TURNOFF PUMP

:LBL2
DELAY CTRL FOR 60

REPEAT

Interpretation: In the task CTRL, FAN and PUMP are turned off if
TEMP1 is over 78. Otherwise, they are turned on. In either case,
the task is delayed for 60 seconds. Execution then continues at
STEP S1.

Note: REPEAT causes the task to go back to the step, not to the
labels.

1. A label must be the only statement on its line.

2. Label names must conform to the rules for variable names.

: (Colon)

Syntax

Example

Usage Rules

166

The semicolon may be used to separate statements that have been
entered on one line to increase the readability of the program. Spaces
may be used in place of a semicolon.

x; x

where each x is a statement.

IF TEMP > 72 THEN TURNON FAN; COUNT = COUNT + 1;
GOTO TWO ENDIF

Interpretation: If the condition is true, then the three linked statements
will be executed.

SETPT1 = 72; SETPT2 = 72

Interpretation: The semicolon is used here for organizational purposes,
to group two similar statements together.

It is not necessary to put spaces or blanks before or after the semicolon.

; (Semicolon)

Syntax

Example 1

Example 2

Usage Rule

167

This symbol can be used in BEST++ to indicate a remark statement.

To use the tilde to indicate a remark statement:

1. Type an executable statement (optional)

2. Type ~.

3. Type the remark (descriptive text).

A remark statement preceded by a tilde is not downloaded to the
Comfort Controller when the program is sent, nor is it uploaded.

The reserved word REM can also be used to indicate a remark
statement. For more information regarding this alternate use, refer
to REM in the Reserved Words, Logical Operators, and Functions
chapter.

~x

where x is the remark.

~THIS PROGRAM WAS WRITTEN ON 2/1/96 TO TEST THE
~OPERATION OF FAN1

IF TEMP1 > 72 THEN TURNOFF FAN1 ENDIF

~CHANGE TEST VALUE TO 78 IN SUMMER

IF TEMP1 > 78 THEN TURNOFF FAN1 ENDIF

Interpretation: Three lines of descriptive text accompany a display
or printout of the program. None of them will be sent to the Com-
fort Controller when the program is sent.

~ (Tilde)

Syntax

Example 1

168

IF (TEMP1 > 78) ~ CHECK THE TEMPERATURE
THEN TURNON FAN1; ~ START BOTH FANS IF TOO HOT
TURNON FAN2
ENDIF

Interpretation: Not only are the tildes in this example used as line
continuation characters, any text appearing after them is recognized
as remarks. The remarks will not be sent to the Comfort Controller
when the program is sent.

 ~REM THIS PROGRAM WAS REVISED ON 3/31/96 TO
 ~REM INCLUDE CHLR8 AND CHLR9 IN THE
 ~REM SEQUENCE.

Interpretation: Sometimes the two forms of remark statements are
combined as follows: ~REM. Although redundant, the combination
is sometimes used for easier identification of the remarks in the
body of the program while preventing the remarks from being sent
to the Comfort Controller.

Example 2

Example 3

169

This symbol is used to assign the address of a CONNECTed hard-
ware or software point to an ARRAY element. This type of assign-
ment is called an indirect assignment.

arrayname[index].ADDRESS = ? connectname

where arrayname is a BEST++ array that has been previously
defined using the ARRAY statement.

index is a constant, variable, or mathematical expression
that is equal to an integer value.

connectname is the name of a CONNECTed hardware or
software point or the name of a BEST++ program.

FANARRAY[1].ADDRESS = ?FANSTATUS1

Interpretation: The address of the CONNECTed point
FANSTATUS is placed into the first element of the ARRAY
FANARRAY.

1. Addresses may only be assigned to ARRAYs using the
.ADDRESS array function.

2. Addresses may only be CONNECTed variables.

3. The ? symbol may only appear to the right of the = sign in an
indirect assignment.

? (Question Mark)

Syntax

Example

Usage Rules

170

Task Execution

171

Task Execution

When you download a BEST++ task, it executes after the user-
configurable time delay. For information on the time delay, refer to
TASK in the Reserved Words, Logical Operators, and Math Functions
chapter in this manual.

Task execution begins at the TASK statement. BEST++ continues to
execute each line sequentially, from top to bottom until it reaches an
ENDTASK statement, unless the task itself instructs otherwise (for
example, GOTO another line, CALL a subroutine, EXIT the task,
REPEAT).

All BEST++ tasks run concurrently in the Comfort Controller. If
multiple programs are running, BEST++ executes the tasks according
to priority as specified in the TASK statement. Each priority gets a
time allocation to execute in and can execute as many lines as pos-
sible in that amount of time. For more information on priority, refer
to TASK in the Reserved Words, Logical Operators, and Math Func-
tions chapter in this manual.

If a task is HALTed and then continued, the task will resume at the
next statement after the HALT.

When a task CALLs a SUBROUTINE, BEST++ executes that subrou-
tine from beginning to end without executing any other tasks or
subroutines.

BEST++ tasks and Comfort Controller algorithms run concurrently.
If a BEST++ task has control of a point, any algorithms that control
the point are locked out until the BEST++ task encounters an AUTO
command. AUTOing the point removes the force. For more informa-
tion on AUTO, refer to AUTO in the Reserved Words, Logical Opera-
tors, and Math Functions chapter in this manual.

This exchange of control is useful when standard control algorithms
are appropriate, but a special control routine is occasionally required.

Single Task
Execution

Multiple Task
Execution

Interaction with
Algorithms

Subroutine
Execution

Halting a Task

172

If a task is running when the Comfort Controller’s power is turned
off and then on again, the task will restart from the beginning after
the POR delay, as specified in the TASK statement, expires. If more
than one task was executing, all the tasks will begin according to
their priority, as specified in the TASK statement. They will all
begin executing Line 1 after their respective POR delays expire.

Any BEST++ variables that were changed before the power was
turned off will retain their values.

When the Comfort
Controller’s Power
Is Cycled

Debugging System

173

Debugging
System

The debugging system consists of two functions: BEST++ Debug
and System Debug. BEST++ Debug is a subset of System Debug
intended for those who require only access to their programs. This
chapter describes both debuggers.

BEST++ Debug allows you to access the currently downloaded
programs and the global dictionary in the target Comfort Controller.

System Debug allows you to view the current maintenance and
configuration status of all hardware and software points, schedules,
setpoints, standard algorithms, global algorithms, and BEST++
programs in the target Comfort Controller.

You can use these debuggers to troubleshoot a program that com-
piled and downloaded to the controller successfully but is not oper-
ating as intended. They provide you with the following capabilities
to control individual tasks in a program:

• RUNning, HALTing, or DELAYing a task

• Viewing or modifying the configuration of an algorithm or point
in the target Comfort Controller

• Viewing, forcing, or autoing points to simulate control operation

For more information, refer to Monitoring and Controlling Tasks
later in this chapter.

This section describes how to use BEST++ Debug, associated menu
items, and the Debug dialog box when you have a copy of the source
program. If you do not have a copy of the source program, use the
BEST Sources function in System Debug.

To access BEST++ Debug, select BEST++ Debug from the BEST
menu in the Programmer’s Environment main menu or press key F8.

Follow the steps below to debug your program:

1. Select the target controller using Set Controller Address in the
BEST menu.

Using BEST++

Debug

174

2. Open the folder containing the source programs. Display the
folder program list by selecting the small down arrow (¬) on
the right of the status bar. Select the program to be debugged
from the list. The program will be displayed in the PE win-
dow.

Note: If you changed the program since the last compile,
you must compile it before activating the debugger.

3. Select BEST++ Debug from the BEST menu in the PE main
menu or press F8.

You are now ready to debug your program. Refer to How To Debug
A Program later in this chapter.

The Debug dialog box contains the menu items and information
described below. The names displayed are the user names defined
in your program, including variables, tasks, connects, etc.

The left box displays a list of all user names in the program. Use the
scroll bars to view names that do not fit in the box.

The right box displays data for the selected user name based on the
selected menu item. For example, the default menu item selection is
Functions. If you select the user name for the task, the functions
supported by the keyword TASK are displayed.

Menu Item Use this menu item to

Functions display the current value of any
output functions and a list of
input functions supported by the
selected username.1

Configuration display current configuration
decisions and their values for
the selected username.2

Maintenance display maintenance decisions
and their values for the selected
username.2

Debug Dialog Box

Debug Dialog Box
Menu Items

175

Menu Item Use this menu item to

Show/Hide Global when Show Global is selected,
display the list of user names,
including those from the pro-
gram currently being debugged
(Local Variables) and those
defined in the global dictionary
(Global Variables).

when Hide Global is selected,
display only the list of user
names from the program cur-
rently being debugged (Local
Variables).

Name/Desc when Name is selected, display
the name used to connect to the
maintenance or configuration
decision. This feature is avail-
able only when you are viewing
maintenance or configuration
decisions.

when Desc is selected, display
the standard 24 character
description that identifies each
of the maintenance or configu-
ration decisions.

Exit return to the Programmer's
Environment.

1When the task name is selected, the Function menu item supports a
pull down menu. Refer to Monitoring and Controlling Tasks later in
this chapter.

2If the task name is selected, the Function pull down menu will be
active when this items is selected.

Debug Dialog Box
Menu Items
(continued)

176

This section summarizes how to troubleshoot a program using
BEST++ Debug.

1. Open the folder and select the program to analyze, If you do
not have the source program, refer to System Debug, Debug-
ging a Program When You Do Not Have the Source and go to
step 4.

2. Compile the program. Make a hard copy list file, which adds
line numbers to the program, using the Make List File menu
item. The line numbers are used with Debug to monitor and
control program flow.

3. Choose BEST++ Debug from the BEST menu. The Debug
dialog box is displayed.

4. Select a task from the list in the Debug dialog box. Then
select the Maintenance menu item, which allows you to see
the current state of the task. Each time you select the task
user name, the maintenance parameters will be updated.
Otherwise, the maintenance parameters will be updated at the
rate of once every 5 seconds.

5. To step through a task:

a. Use the Breakpoint command from the Functions menu
to set a breakpoint at the line number where you want to
start evaluating the task program flow. The status bar on
the main window will indicate that the breakpoint is set
on the line number entered.

Note: Since Step and Label statements are not actually
executed, you cannot use them as breakpoints.
Select only lines that have logic keywords.

b. When the breakpoint is reached, use Debug to view and
modify the values of any constants and variables. Use
the Show Global menu item to view global variables and
points.

How To Debug a
Program

177

c. To single step through the program, select the task name,
then select the Single Step command from the Functions
menu. BEST++ executes the current line and advances
to the next one based upon the results. The status bar
will identify the next line to be executed and the line will
be displayed in the edit box.

Note: Before you can Single Step, you must set a
breakpoint.

d. Continue to single step through the program or execute
another task section by setting a new breakpoint and
continuing program execution.

6. When debugging is completed, clear the breakpoint and select
Continue to run the program.

This section describes how to determine the state, reschedule rate,
and execution time of a BEST++ task. It also describes how to
control the task in order to troubleshoot your programs.

1. Select the program in the target device that you would like to
work with as described in How To Debug A Program.

2. Select the user name that identifies the task in the selected
program. A program can contain more than one task.

To monitor the task:

3. Select Maintenance from the Debug dialog box. The current
task state, task timer, and execution time will be listed in the
status window. The data will be updated dynamically every 5
seconds.

To control the task:

4. Perform step 3 above, then select Functions from the Debug
dialog box. The following list of task control commands will
be displayed.

Monitoring and
Controlling Tasks

178

Command Use this command to

Show Functions display the functions associated
with the task in the status list of
the Debug dialog box. To
return, select the Maintenance
function.

RUN execute the currently selected
task from the beginning.

HALT stop a task in the Comfort
Controller. If the task is already
halted, this command will have
no effect. However, the task
will not execute again until it is
RUN.

Any devices controlled by a task
that is halted remain in the last
state commanded by the program
before it was halted. Any
actions not yet taken do not
occur.

HALT does not restore any
devices controlled by the task to
a predetermined state. If any of
the BEST++ forces that were
completed by the program are to
be changed, either you or an-
other program must change
them.

If a task is already stopped when
this command is issued, the
normal operation of the program
is not affected. The task will
interpret the redundant HALT as
confirmation that the program
should not be running.

Task Control
Commands

179

Command Use this command to

DELAY suspend the execution of a
selected task. A dialog box is
displayed where you can enter
the delay time in seconds. After
you confirm, the task delays for
the specified time then continues
executing.

BREAKPOINT halt a task at a specific program
line. A dialog box will be
displayed for you to enter the
line number. (You can obtain a
copy of the source program with
line numbers by compiling the
program and selecting Make List
File from the BEST menu.)
Breakpoints can only be inserted
on lines that contain logic
keywords (IF, WHEN, =, DE-
LAY, etc.). To clear a
breakpoint, select this command
and enter a line number of zero.

Note: Version 1.3 and earlier of
the Comfort Controller will not
accept a breakpoint on the first
logical statement after TASK.
Put the breakpoint on the second
or higher logic statement.

CONTINUE cause a task delayed as a result
of BREAKPOINT or SINGLE
STEP to resume executing. The
task will begin executing from
the breakpoint or last single step
until the program is halted or the
breakpoint is reached again. The
shortcut key for this command is
F5.

Task Control
Commands
(continued)

180

Command Use this command to

SINGLE STEP cause a task at a breakpoint to
execute the current line number
and then stop again. The short-
cut key is F8. When the pro-
gram stops after SINGLE STEP,
the line is displayed in the edit
box at the bottom of the debug
window.

This section describes System Debug and associated menu items and
the Upload/Debug dialog box. The Upload/Debug dialog box is a
window into the target Comfort Controller, allowing you to:

• view and override values and modify configuration.

• access functions and BEST++ programs.

To access the System debugger, select System Debug from the
BEST menu in the Programmer’s Environment. BEST++ displays
the Upload/Debug dialog box, which is similar to the Debug dialog
box discussed previously with the Select menu item added.

This section describes how to debug when you do not have the
source program. Follow the steps below to debug your program in a
Comfort Controller.

1. Select the target controller using Set Controller Address in the
BEST menu. Select System Debug.

2. Select BEST++ Source from the Select menu.

3. After the programs are listed, select the one to debug.

4. Select Upload. The selected program is uploaded, and the
decompiled version is displayed in the PE window.

Note: If more than one program exists, save each of the
uploaded programs to a temporary folder so that the

System Debug

Debugging When You
Do Not Have the
Source Program

Task Control
Commands
(continued)

181

programs do not have to be uploaded each time you
select a new program.

You are now ready to debug your program. Refer to How To
Debug A Program.

The Upload/Debug dialog box contains the following menu items.
Use the Tab key to access the menu.

Menu Item Use this menu item to

Select display a list of the different
object type categories in the
target device. Refer to Select
Menu below for more details.
When you select a category, all
of the objects of that type in the
device are uploaded, and you
can view or modify them.

Create This function is not currently
supported.

Delete active only when the BEST++
Sources category is chosen
under Select. Refer to BEST++
Sources Command.

Upload active only when the BEST++
Sources category is chosen
under Select. Refer to BEST++
Sources Command.

Debug access the Debug dialog box for
the selected item in the category
chosen. Refer to BEST++
Sources Command.

Exit exit the debugger and return to
the Programmer’s Environment
main menu.

Upload/Debug Dialog
Box Menu Items

182

This section describes the Select menu commands displayed in the
Upload/Debug dialog box.

Command Use this command to

I/O Channels access all of the hardware and
software points in the target
controller. The system will read
each of the possible hardware
channels (64 in a 6400 and 16
in a 1600) and software chan-
nels (32 in a 6400 and 16 in a
1600). The status bar will
indicate when the read is com-
pleted and the Upload I/O
Channels dialog box will be
displayed.

The Upload I/O Channels
dialog box will contain each
hardware channel's name and
description, starting with
Channel #1, followed by the
software channels. If you are
using V1.1 or V1.2 Comfort
Controller software, then any
point not used is identified by
the name Deconfig and the
descriptor Deconfigured I/O
Channel. V1.3 software and
above does not display
deconfigured I/O channels.
Once you select a point, you can
select Debug to activate the
Debug dialog box. Refer to
Debug Dialog Box for a de-
scription of its operation.

Schedules access all time and holiday
schedules in the target device,

Select Menu
Commands

183

Command Use this command to

including Occupancy, Linkage,
AOSS, and network time
schedules. The schedules are
displayed with the 8 character
name and the 24 character
description. Once you select a
schedule, you can select Debug
to activate the Debug dialog
box. Refer to Debug Dialog
Box for a description of its
operation.

Setpoints access all setpoint schedules,
including AOSS setpoint
schedules, in the target device.
The system reads each setpoint
schedule and displays its name
and description in the Upload
Setpoints dialog box. If you are
using V1.1 or V1.2 Comfort
Controller software, any
setpoint schedule not used will
be identified with the name
Deconfig and the description
Deconfigured Setpoint. V1.3
software and above does not
display deconfigured setpoints.
Once a setpoint is selected, you
can select Debug to activate the
Debug dialog box. Refer to
Debug Dialog Box for a de-
scription of its operation.

Data Collection access runtime and
consumables in the target
device. The system reads each
data collection table and dis-
plays its name and description
in the Upload Data Collection
dialog box.

Select Menu
Commands
(continued)

184

Command Use this command to

Standard Algorithms access all of the standard
algorithms in the target device.
The system reads each algo-
rithm and displays its name and
description in the Upload
Algorithms dialog box.

The status bar indicates when
the read is completed. If you
are using V1.1 or V1.2 Comfort
Controller software, any algo-
rithm not used is identified by
the name Deconfig and the
description Deconfigured
Function. V1.3 software and
above does not display
deconfigured algorithms. Once
you select an algorithm, you can
select Debug to activate the
debug dialog box. Refer to
Debug Dialog Box for a de-
scription of its operation.

BEST++ Programs access any configuration or
maintenance decisions in a
BEST++ program in the target
device. This command gives
you the same functionality as
BEST++ Debug.

BEST++ Sources This command provides you
with capabilities not supported
in BEST++ Debug. It allows
you to delete a program or
initialize to delete all programs
and the dictionary. Addition-
ally, you can upload and
decompile a program for which
you do not have the source.

Select Menu
Commands
(continued)

185

Command Use this command to

Select has the same functionality as in
the Upload/Debug dialog box.

Create not supported.

Delete remove the selected BEST++
program from the connected
controller.

Upload upload the selected program
from the connected controller
and decompile it.

Debug access the BEST++ Debug
window.

Initialize delete all the controller’s
BEST++ programs. You will
be prompted to confirm the
initialization. Select Yes or No.

If a program is running when
you initialize the Comfort
Controller, points forced by the
BEST++ program remain
forced.

When BEST++ Debug is
selected, BEST will access the
target device to determine what
programs are currently loaded.
The status bar indicates if the
target device read was success-
ful.

If No Response is displayed,
BEST was unable to communi-
cate with the target Comfort
Controller. Verify that the
address is correct and retry the
command.

Select Menu
Commands
(continued)

186

Command Use this command to

After the target Comfort Con-
troller is successfully read, the
list of programs loaded will be
displayed in the Upload BEST
Programs dialog box. The
status bar will indicate Read
Complete.

Exit exit the debugger and return to
the BEST++ Programmer’s
Environment.

System access all Service-Config
Tables and other functions. The
most commonly used functions
are described below.

Name (Description) Functions

CC6400 (Comfort Controller)* Configuration - Controller
identification table
Maintenance - Available real
time

CCNCNTRL (CCN control) Configuration - Communication
configuration
Maintenance - Communication
statistics

RTC (Real-time clock) Configuration - Broadcast
configuration
Maintenance - Real-time clock

SETCLOCK (Set clock) Configuration - Real-time clock
configuration
Maintenance - None

*Name and description found in CNTRL-ID.

Select Menu
Commands
(continued)

System Functions

187

Name (Description) Functions

UPDATEDB (Update database) Configuration - Updates data-
base from Service Configura-
tion tables

Maintenance - Identifies
memory allocation and error
status

This procedure describes how to use System Debug to delete a
single program or all programs in a target Comfort Controller.

Note: The program is not deleted from the disk.

1. Select the target Comfort Controller using Set Controller
Address in the BEST menu.

2. Select System Debug to display the Upload/Debug dialog box.

3. Select BEST++ Programs to display a list of all the programs
currently loaded in the target device.

4. To delete a single program, select the program and select
Delete from the menu. A confirmation dialog box is dis-
played. Selecting Yes replaces the listed program name with
Delete. Selecting No causes no change to the program list.

Note: It may take some time to delete a large program.

5. To delete all programs, select Initialize from the menu. A
confirmation dialog box is displayed. Selecting Yes deletes
all program names from the list. Selecting No causes no
change to the program list.

How To Delete
BEST PROGRAMS

System Functions
(continued)

188

Syntax Error
Messages and
Report Warnings

189

Syntax is the proper arrangement of words and symbols in a pro-
gram. An incorrect arrangement of words and symbols results in a
syntax error. To determine the syntax for a reserved word, math
function, operator, or symbol, refer to the appropriate chapter.

When you select the Compile Program, Compile All, or Make List
File commands, the BEST++ compiler checks your program(s) for
syntax errors and report warnings.

Note: Selecting Make List File does not compile your program.
You must compile the program before selecting Make List
File.

If a syntax error is detected, the compiler generates a syntax error
message and displays it below the line in error.

The statement below contains a syntax error followed by the appli-
cable syntax error message.

CONNECT SPT AS A TEMP_INPUT {SPT}
TURNON SPT

***LINE 40, Error 19 (TURNON), invalid parameter name

Note: You must correct all syntax errors in the source file and
compile the program correctly before the program can be
downloaded (sent) to a controller. You do not need to
correct warnings before downloading the program.

Do not edit the list file because changes to it will not be
saved to the source file.

If a missing argument, unreferenced object, or misuse of = (equal
sign) is detected, the compiler corrects the error, and generates and
displays a report warning.

The statement below contains an error followed by the applicable
report warning.

IF STEPTIMER = 60 THEN TURNOFF FAN1 ENDIF

Line 7, Error 33 (VARIABLE STEPTIMER), warning, = used as a
conditional. Changed to EQ.

What Is Syntax?

Syntax Error
Messages and
Report
Warnings

Detection of
Syntax Errors and
Report Warnings

Syntax Errors

Report Warnings

190

The following BEST++ syntax error messages and report warnings
are listed according to their error code numbers. A description for
each syntax error message and report warning is provided.

Note: Report warnings will not display unless you select Report
Warnings from the Option menu.

1. “IN element missing”

The external CONNECT statement is missing the element
number of the controller to which you wish to CONNECT.

2. “THEN missing”

The THEN portion of the IF ... THEN ... [ELSE] ... ENDIF
statement is missing.

3. “warning, undeclared name. Assumed type VARIABLE”

There was no definition for the name encountered in the Task
or the Global Dictionary and, therefore, it is assumed to be a
variable.

4. “expected a user name”

The compiler expected a unique, user-defined name to follow
the reserved word.

5. “warning, missing arguments”

There are fewer than the expected number of arguments for
this keyword. The compiler will add null arguments.

6. “duplicate user name”

This variable has been defined already. Use a different name.

7. “missing arguments in ()”

There are fewer than the expected number of arguments for
this keyword. The compiler will add null arguments.

List of Syntax Error
Messages and
Report Warnings

191

8. “GOTO label not defined”

The label name following GOTO has not been defined with a
“STEP labelname” or “:labelname”.

9. “cannot find a previous operand”

An operator (such as +, -, *, or /) is missing before a variable
and/or constant.

10. “post operand missing”

An operator (such as +, -, *, or /) is missing after a variable
and/or constant.

11. “object does not have a default function”

The user-defined name was used without defining or defined
incorrectly.
vartype.decname or functiontype,subfunction.decname.

12. “missing) “

The number of open parentheses exceeds the number of
closed parentheses.

13. “too many constants defined”

Too many initialization parameters have been defined for this
reserved word. Initialization parameters are defined between
{ }.

14. “end of file before } “

An end of initialization symbol “ } “ is missing.

15. “expected a KEYWORD”

In the CONNECT statement, var was used without specifying
a valid vartype (such as TEMP_INPUT or DISC_OUTPUT).
For a list of default vartype names, use the Paste Function
command to display the syntax for CONNECT.

192

16. “name is not a label”

The name used in the GOTO statement is defined, but it is not a
label name.

17. “warning, unreferenced object”

A name was defined but not used in the program.

18. “nothing requiring initialization”

The reserved word entered before { } cannot be initialized.

19. “invalid parameter name”

The decision name associated with the function is not valid for
the vartype.

20. “variable is not an array”

The variable is not an array and does not support array indexing.

21. “PROGRAM definition missing”

The PROGRAM definition statement is missing.

22. “array without a subscript”

The variable is an array and requires an array index.

23. “constant outside limits”

The constant that is used in the initialization string is outside its
valid range.

24. “name too long”

The name used in the initialization string has too many charac-
ters. The limit is eight characters.

193

25. “description text too long”

The description in the initialization string consists of more
than 24 characters.

26. “time field invalid”

The time field in the initialization string is invalid. The valid
format is HH:MM, where HH is 0 to 24 and MM is 0 to 59.

27. “date field invalid”

The date field in the initialization string is invalid. The valid
format is MM/DD/YY, where MM is 0 to 12, DD is 0 to 31,
and YY is 0 to 99.

28. “invalid flag field”

The value entered in the { } is invalid. You can only enter 1's
and 0's in the flag field.

29. “ENDIF missing”

The ENDIF required to terminate an IF statement is missing.

30. “ENDLOOP missing”

The ENDLOOP required to terminate a LOOP statement is
missing.

31. “field must be a number”

The data entered in the initialization string is not a number.

32. “TASK missing”

The program is missing the TASK statement which defines
the task name.

194

33. “warning, = used as a conditional. Changed to EQ”

An = sign was used in a conditional statement (following an
IF or WHEN). The BEST++ compiler changed the equal sign
to EQ, which must be used to show conditional equality.

34. “operand missing”

An operand such as +, -, *, or / is missing in a mathematical
expression.

35. “REPEAT without STEP”

A REPEAT statement was used without a previous STEP
statement.

36. “ELSE without ENDIF”

The ENDIF required to terminate an ELSE in an IF statement
is missing.

37. “ENDTASK missing”

The ENDTASK statement required to terminate a program is
missing.

38. Not used.

39. “PROGRAM NAME cannot be same as Dictionary NAME”

The global dictionary must have the same name as the folder
in which it resides. The global dictionary cannot have the
same name as another program. The global dictionary must
be the first program in a folder.

40. “Can only use this keyword with the advanced version”

This reserved word is not supported by the BEST++ com-
piler.

195

41. “compilation terminated - too many logic words”

The number of logic reserved words (TASK, IF, THEN, =
DELAY, etc.) has exceeded the maximum number of 600.

42. “compilation terminated - dictionary full”

The number of reserved words has exceeded the maximum
number of 300.

43. “compilation terminated - too many errors”

The number of errors has exceeded the maximum number of
120.

44. “compilation terminated - object functions list full”

The number of functions (hardware and software points,
configuration and maintenance decisions, HVAC functions,
system functions, schedules, and alarms) has exceeded the
maximum number of 240. The program must be split to
compile and execute successfully.

45. “compilation terminated - too many lines of code”

The number of source lines has exceeded the maximum
number of 600. The program must be split to compile and
execute successfully.

46. “compilation terminated - link list full”

The number of links used by reserved words, operators,
mathematical functions, etc. has exceeded the maximum
number of 1500. The program must be split to compile and
execute successfully.

47. “compilation terminated - object list full”

The number of objects has exceeded the maximum number of
600. The program must be split to compile and execute
successfully.

196

48. “compilation terminated - initialization list full”

The number of initialization parameters has exceeded the
maximum number of 900.

49. “compilation terminated - ran out of heap space”

The internal program compilation array has exceeded the
maximum size of 1500.

50. “compilation terminated -group priority stack overflow”

The nesting stack has exceeded the maximum level of 20.
You have nested too many IF, THEN, or LOOP statements.

51. “incomplete syntax”

The syntax is incomplete and the BEST++ compiler cannot
properly evaluate it. For example, the = sign is missing from
this statement: x y + 3

52. “duplicate label name”

The label name has been used in a previous STEP labelname
or :labelname.

Appendixes

197

The following table lists, in decreasing order, the force priorities
within the Comfort Controller. You specify the force priority
(forcepri) in a TASK statement. For the syntax, refer to TASK in
the Reserved Words, Logical Operators, and Math Functions chap-
ter.

When BEST++ writes a value to an internal hardware or software
point, it will write the value as dictated by the forcepri. When
forcing variables over the CCN network, all writes will cause BEST
forces, regardless of the forcepri setting.

Network Service
forcepri Description Tool Display

0 Standard control algorithm (blank; no display)

1 Fire Fire

2 Safety Safety

3 Network Service Tool/LID Service

4 Building Supervisor SUPVSR

5 Offsite monitoring Building Monitor
Supervisor

6 Minimum on or off time Min Off

7 Controlling POC Control

8 BEST++ command BEST
(8 is the default value. If you
enter a comma as a placeholder
for forcepri in the TASK
statement, BEST++ will compile
forcepri as an 8.)

9 Temperature override Temp

10 Loadshed Load

Appendix A

Comfort Controller
Force Priorities

198

Appendix B

Metric Units
BEST++ programs can read and write values in either customary US
or metric engineering units. The default is customary US. All system
elements that share data in BEST++ must communicate using the
same engineering units (customary US or metric).

To change from customary US to metric engineering units, select
Metric Units from the Option menu in the Programmer's Environ-
ment. Then, when necessary, define constants with metric engineer-
ing unit names or numbers. Refer to the next topic to determine when
you must define a constant's engineering unit.

In BEST++ you must define the engineering unit of a constant used in
a calculation or comparison if:

• the constant's value is not the same in both customary US and
metric engineering units. For example, 20⋅F is different from
20⋅C.

• the program is to be converted from customary US to metric
engineering units or from metric to customary US.

To define the engineering unit of a constant, type the standard
BEST++ engineering unit name or number within { } as an initializa-
tion string. To view a list of engineering unit names and numbers,
select Unit Names from the Help menu. BEST++ displays the list of
engineering units and numbers. The units displayed (customary US or
metric) will depend on whether you selected Metric Units from the
Options menu.

Example 1 below indicates how to define the units of a constant by
entering the unit name.

IF TEMP1 > 20 {deg_C} THEN TURNON FAN1

Example 2 below indicates how to define the units of a constant by
entering the unit number.

IF TEMP1 > 20 {1} THEN TURNON FAN1

Changing to Metric
Units

Defining the
Engineering Units of a
Constant

Example 1

Example 2

199

It is possible to write a program using customary US units, compile it,
then convert to Metric Units by selecting the Metric Units option.
When such a program is decompiled (or uploaded and decompiled),
the constant's value will be converted to metric and its customary US
units name will be changed to the corresponding metric name. Simi-
larly, programs written in metric may be converted to customary US
units.

Example 3 below illustrates how the BEST++ compiler will convert
program lines written with metric engineering units to customary US
units.

Metric option selected

x = spacetemp + 3 {rel_C} ~ add 3 relative degrees C to
~ spacetemp

IF hcvflow > 30 {Ltr_min} THEN ~ compare hcvflow to 30 ltr_min
hcv = hcv - 1 ENDIF

Customary US option selected and program decompiled

x = spacetemp + 5.4 {rel_F}
IF hcvflow > 7.926023 {GPM} THEN
hcv = hcv - 1 ENDIF

Converting Engineering
Units

Example 3

200

Appendix C

The table below compares the FID BEST Programmer's Environ-
ment (PE) commands to the BEST++ PE commands.

Note: Not all BEST PE commands have comparable BEST++
PE commands.

FID BEST PE Command Comparable BEST++ PE Command BEST++ PE Command Location

ACTIVATE None. Once you download a BEST++ Not applicable
program to a controller and the user-
configurable time delay expires, the
program executes automatically.

BYE Exit File menu

CHECK Compile Program or Compile All BEST menu

COPY Save Program As. . . File menu

DELETE Delete System Debugger’s BEST++
Sources dialog box

EDIT Open Folder and/or Open Program File menu

GET Upload System Debugger’s
BEST++ Sources dialog box when
task name is highlighted

HALT Halt Functions menu in the BEST++
Debugger’s Debug dialog box when
task name is highlighted

INITIALIZE Initialize System Debugger’s BEST++
Sources dialog box

KEEP Save Program As. . . File menu
(save as a different name)

LIST Open Folder File menu

MOVE Set Address BEST menu

PRINT Print Program or Print All File menu

RECOVER None Not applicable

SEND Download Program or Download All BEST menu

Comparison of FID
BEST and BEST++ PE
Commands

201

Appendix D

ComfortWORKS
Programmer's
Environment

The information that follows provides instructions on how to use
ComfortWORKS to access the BEST++ Programmer's Environ-
ment, and a general explanation of each ComfortWORKS
Programmer's Environment menu item and command.

Follow the instructions below to launch the ComfortWORKS
BEST++ application and display the Programmer's Environment
window.

1. Double click on the BEST++ icon, which is displayed in the
ComfortWORKS program group window.

ComfortWORKS displays a Programmer's Environment
window similar to the one shown in the figure below. The top
line of the window contains the menu bar. Refer to the
BEST++ Menu Command Summary, which appears at the
end of this appendix, for a description of each menu item and
command. The second line of the window contains the
toolbar. Refer below to BEST++ Toolbar for information on
using each toolbar button.

The third line of the window contains a drop-down list, which
displays the names of all programs in the folder that is cur-
rently open. The section on the far right displays the target
Comfort Controller address. If you have enabled the Options
menu’s Show units names command, a drop down list that
lists the names of the Comfort Controller’s units will display
on the far right of this line.

Accessing the
Programmer's
Environment

BEST++ Programmer's Environment

Tasks:

HelpOptionsFile Edit BEST++

Address: Not selected

Figure D-1
Programmer's
Environment Window

202

BEST++ Toolbar The following table describes the buttons that appear on the
Programmer's Environment toolbar.

Click on To

open an existing folder.

save the current folder.

open an existing BEST++ program.

save the existing BEST++ program.

print the current BEST++ program.

search for text. Click on this button with the

Ctrl key depressed to Replace text.

compile the current BEST++ program. Click

on this button with the Ctrl key depressed to
compile all programs.

de-compile the current BEST++ program.

download the current BEST++ program to

the Comfort Controller. Click on this button
with the Ctrl key depressed to download all
programs.

display help.

Table D-1
Programmer's
Environment Toolbar
Buttons

203

This section describes each of the commands that appear in the
Programmer's Environment window menus.

The following table describes each of the commands that appear in
the File Menu.

Command Use this command to

New Folder create a new folder. When selected, this
command displays the New Folder dialog
box, which contains a list of the existing
folders in the current directory. Enter the new
folder file name and click on OK. BEST++
will create a new folder, and create and
display a global dictionary program for the
folder. BEST++ will automatically insert the
PROGRAM statement, and assign it the same
file name that you assigned to this new folder.
The new program name will also display in
the Programmer’s Environment window’s
title bar.

New Folder Dialog Box Options:

File Name: Enter a unique name (up to 8
alphanumeric characters, with first 7 charac-
ters unique) of the new folder. You must
maintain the file name extension provided by
BEST++ (.FLD).

Drives: Select the drive on which you wish to
store the new folder.

The Directories folder: Select the name of the
directory to which you wish to save the new
folder.

 (continued)

Programmer's
Environment
Menu Command
Summary

File Menu

204

Command Use this command to

New Folder Dialog Box Options
(continued):

Network: Selects a shared network drive to
which to save your folder.

OK: Exits the dialog box and saves the new
folder.

Cancel: Exits the dialog box without saving
the folder.

Help: Displays help information.

Open Folder open an existing folder. When selected, this
command displays the Open Folder dialog
box, which contains a list of existing folders
in the current directory. Select an existing
folder’s file location and file name and click
on OK. BEST++ will open the existing folder.
When you open a folder, BEST++ will dis-
play the first program in the folder, which is
always the global dictionary. The folder name
will display in the title bar of the
Programmer’s Environment window. To
display other programs in the folder, click on
the Tasks drop down list.

Save Folder save the open folder. If the folder was not
already saved, this command, when selected,
displays the Save As dialog box. Save As
dialog box options are the same as the New
Folder dialog box options. For further infor-
mation on these dialog box options, refer
above to the New Folder Command.

 (continued)

205

Command Use this command to

Save Folder As save the open folder under a new name. When
selected, this command displays the Save As
dialog box. When you save a folder using this
command, all programs in the folder will be
copied to the desired path. Save Folder As
dialog box options are the same as the New
Folder dialog box options. For further infor-
mation on these dialog box options, refer
above to the New Folder Command.

Delete Folder delete a selected folder. This command
deletes the folder only; it does not delete any
programs listed in the folder. When selected,
this command displays the Delete Folder
dialog box. Delete Folder dialog box options
are the same as the New Folder dialog box
options. For further information on these
dialog box options, refer above to the New
Folder Command.

New Program create a new BEST++ program. When se-
lected, this command displays the New
Program dialog box. This dialog box lists the
existing programs and prompts you to name
the new program. BEST++ opens a new
program and automatically inserts the PRO-
GRAM statement. The new program name
will display in the title bar of the
Programmer’s Environment window.

Open Program open an existing program to view or edit. If
the program is not part of the open folder, you
will be prompted to add it to the open folder
with the message Add program to task list?.

 (continued)

206

Command Use this command to

Save Program save the open program. If the program was
not already saved, this command, when
selected, displays the Save As dialog box.
Save as dialog box options are the same as the
New Folder dialog box options. For further
information on these dialog box options, refer
above to the New Folder Command.

Save Program As save the open program under a new name.
When selected, this command displays the
Save As dialog box. Save Program As dialog
box options are the same as the New Folder
dialog box options. For further information on
these dialog box options, refer above to the
New Folder Command.

Remove Program remove the open program from the currently
open folder. A confirmation dialog box will
appear. Click on Yes to remove the program
from the open folder. This process only
removes a program name from the open
folder’s program list. It does not delete the
program.

Delete Program delete a selected program. When selected, this
command displays the Delete File dialog box.
Delete File dialog box options are the same as
the New Folder dialog box options. For
further information on these dialog box
options, refer above to the New Folder Com-
mand.

Print Program print the current program.

Print Setup select printer options.

Exit exit the BEST++ application.

207

Edit Menu The following table describes each of the commands that appear in
the Edit Menu.

Command Use this command to

Copy copy selected text to the clipboard.

Cut remove the highlighted text. The removed
text is saved to the clipboard for future use
with the Paste command. The clipboard
contains only the most recently cut or copied
text.

Paste insert previously cut or copied text from the
clipboard into your program at the current
cursor location.

Delete permanently delete the highlighted text.
Deleted text is not stored on the clipboard,
and therefore cannot be retrieved using the
Copy or Paste commands.

Find locate a designated text string.

Find Dialog Box Options:

Find What: Enter the text string you wish to
find.

Find Next: Start the search and locate the
designated text string in the program you are
editing.

Match Whole Word Only: The search finds
only entire words. For example, if you are
searching for the word main, BEST++ will
find main in the word remainder, unless you
have enabled this option.

Match Case: Match the text string’s capitali-
zation exactly.

 (continued)

208

Command Use this command to

Find Dialog Box Options
(continued):

Up or Down: Searches from the current
cursor location back up to the beginning of
the program, or to search from the current
cursor location to the end of the program.

Cancel: Exits the Find dialog box without
executing the Find command

Replace search and replace one text string with an-
other.

Replace Dialog Box Options:

Find What: Enter the text string you wish to
find and replace.

Replace With: Enter the text that will replace
the Find What text string.

Match Whole Word Only: Have the search
find only entire words. For example, if you
are searching for the word main, BEST++
will find main in the word remainder, unless
you have enabled this option.

Match Case: Match the text string’s capitali-
zation exactly.

Find Next: Begin the search from the current
cursor location and locate the next instance of
the Find What text string.

 (continued)

209

Command Use this command to

Replace Dialog Box Options
(continued):

Replace: Replaces the highlighted text with
the Replace With text string.

Replace All: Changes all instances of the
Find What text string.

Cancel: Exits the Replace dialog box without
executing the Replace command.

Paste Function access the Paste Function sub-menu (All,
Operators, Math functions, Program control).
Paste Function, which is designed as a time-
saving feature, displays the Paste Function
dialog box. This dialog box gives you the
ability to view the syntax, identify configura-
tion and maintenance parameters, and display
on-line help for each BEST++ keyword. You
can then select a keyword and BEST++ will
automatically insert the syntax of the selected
word into your BEST++ program.

If you select Paste Function followed by:

All, the Paste Function dialog box will display
all logical operators, and program control
functions.
Operators, the Paste Function dialog box will
display all supported mathematical, relational,
and logical operators.
Math functions, the Paste Function dialog box
will display mathematical functions (ABS,
ACOS, ASIN, etc.).
Program control, the Paste Function dialog
box will display reserved words used to
control flow of program logic (AUTO, CALL,
DELAY, etc.).

 (continued)

210

Command Use this command to

Paste Function Dialog Box Options:

Select item: Select an item to paste in your
BEST++ program.

Syntax: Enable to display the required syntax
for the selected reserved word. The syntax
will display in the lower half of this dialog
box.

Functions: Enable to display the functions
list for the selected reserved word. The
functions will display in the lower half of this
dialog box.

Help: Enable to display help information for
the selected reserved word. Help will display
in the lower half of this dialog box.

Show references: Updates the Select item list
to include extended syntax for the selected
reserved word.

Don’t show references: Exits the extended
syntax list and returns the Select item list to
its previous state.

Paste: Pastes the displayed syntax into the
currently-displayed BEST++ program. The
syntax will be inserted into the program at the
current cursor location.

Close: Exits the Paste Function dialog box
without executing the Paste function com-
mand.

Help: Displays help information on the Paste
Function dialog box.

 (continued)

211

Command Use this command to

Example: The following example shows how
to Use Paste Function to insert CONNECT
syntax into an open program automatically.
The Connect will be to the setpoint schedule.

1. Select Edit, Paste function, All.
2. In the Paste Function dialog box's

Select item list, select Connect.
3. Click on the Functions radio button

and then click on Show references.
4. In the Select item list, select Setpoint.
5. Then, click on Paste.

BEST++ will paste the corresponding
Connect syntax into the open program
at the current cursor location.

6. Click on Close to close the dialog box.

The following table describes each of the commands that appear in
the BEST++ menu.

Command Use this command to

Select
Comfort Controller select the target controller. When you select

this command, the Select Comfort Controller
dialog box displays. After you enter and
confirm the address, it displays in the third
line of the Programmer’s Environment win-
dow.

Compile Program compile the currently-displayed BEST++
program. When you select this command, the
compilation process begins. The Compiling
window lists the status and results of the
compilation process, including any syntax
errors detected and the compiled program
size.

 (continued)

BEST++ Menu

212

Command Use this command to

Compiling Window Options:

Abort: Stops the compilation.

Print: Prints the information in the Compiling
window.

Close: Closes this window.

Compile All compile all of the BEST++ programs contained
in the open folder. When you select this com-
mand and select Yes in the confirmation dialog
box, the Compiling window displays the results
of each compile process. Programs are compiled
in the order in which they are listed in the Tasks
drop down list.

Compiling Window Options:

Abort: Stops the compilation.

Print: Prints the information in the Compiling
window.

Close: Closes this window.

Decompile Program decompile the currently-displayed BEST++
program. Decompiling can be used during
debugging and is especially helpful if you wish
to determine how the compiler interpreted your
logic.

Make List File create a decompiled version of the currently
open BEST++ program that includes line num-
bers. You can use this command when debug-
ging your program. When you select this com-
mand, the results of the decompile are displayed
in the Listing window.

Listing Window Options:

Abort: Not available for Make List File com-
mand.

Print: Prints the information in the Listing
window.
Close: Closes this window.

 (continued)

213

Command Use this command to

Show
Compiler Window This command is currently not supported.

Download Program send the currently open program from
ComfortWORKS to the target Comfort
Controller. BEST++ will download the last
compiled version of the program. The pro-
gram will automatically begin to execute after
the time specified in the TASK statement’s
reschpor (power on reset) parameter.

Download All send all of the programs in the currently open
folder from ComfortWORKS to the target
Comfort Controller. BEST++ will download
the last compiled version of each program.
The programs will download in the order
listed in the folder and will automatically
begin to execute after the time specified in the
TASK statement’s reschpor (power on reset)
parameter.

BEST++ Debug access and troubleshoot a program that has
been downloaded to the target Comfort
Controller. You can list a program’s user
names (variables, task connects, etc.) and then
display a selected name’s input functions, or
display the current value of supported output
functions, maintenance, or configuration
decisions. BEST++ Debug also gives you the
ability to monitor and evaluate program flow
and logic by allowing you to halt, resume,
insert breakpoints, and to view and modify
program and configuration values. On select-
ing this command, BEST++ will display the
Debug dialog box.

Debug Dialog Box Options:

The Debug List: Select the user name (vari-
able, task connect, etc.) that you wish to
examine. Then click on Functions, Configu-
ration, or Maintenance.

 (continued)

214

Command Use this command to

Debug Dialog Box Options
(continued):

Functions: Displays the current value of the
associated output functions and a list of input
functions supported by the selected name.

Configuration: Displays the current value of
configuration decisions for the selected name.

Maintenance: Displays the current value of
maintenance decisions for the selected name.

Show Description: Enables or disables
display of the standard 24-character descrip-
tion in place of the maintenance or configura-
tion decision name.

Show Global: Enables or disables display of
global dictionary names in the Debug list.
When this option is enabled, the Debug list
will include local variables (names from
program currently being debugged) as well as
all global dictionary variables.

Edit: Modifies the value of the currently-
selected Debug data list data. Note that these
edits change data and values of variables as
they exist in the Comfort Controller — they
do not change values in source BEST++
programs or data in your ComfortWORKS
database.

Run: Executes the currently-selected task
from the beginning.

Halt: Stops execution of the currently-
selected task. The task will not resume execu-
tion until you start it by clicking on Run or
Continue. Any devices controlled by the
halted task remain in the last state com-
manded.

 (continued)

215

Command Use this command to

Debug Dialog Box Options
(continued):

Delay: Delays task execution for the speci-
fied number of seconds. The task will delay
for the specified time and then continue
execution at the point where it was when you
selected Delay.

Breakpoint: Halts the currently-selected task
at the specified line number. To determine
line numbers, display a copy of the source
program with line numbers by selecting the
Make List File command from the BEST++
menu. When a task halts at a specified
breakpoint, you would typically begin single-
stepping line-by-line through the code and
examining task flow. You could also select an
item from the Debug list and examine its
current associated function, configuration, or
maintenance data. You can place breakpoints
only on lines that contain logic keywords (IF,
WHEN, =, DELAY, etc.). For example, you
cannot place breakpoints on non-executable
lines such as those that begin with STEP or
label names. To resume execution, click on
the dialog box's Continue or Run button. The
task will resume execution, but will halt again
when it reaches the specified breakpoint. You
can also resume execution by clicking on
Single step, which will cause BEST++ to
execute the next program line and stop. If
there is a breakpoint set, the breakpoint line
number will display in the Debug dialog box.
You clear a breakpoint by entering 0 in the
Breakpoint dialog box.

Single step: Evalutes task flow on a line-by-
line basis beginning at the line number that
you specify by clicking on Breakpoint.

 (continued)

216

Command Use this command to

Debug Dialog Box Options
(continued):

BEST++ will execute one line and then stop
again. The task will remain stoppped until
you resume execution by clicking on the
Debug dialog box's Continue or Run button.

The current line number and the associated
line of code will display in the Debug dialog
box.

Continue: Causes a task that was delayed as a result of
selecting Breakpoint or Halt to resume execu-
tion. The task will resume from the
breakpoint or the line it was at when halted,
and will continue until the program is halted
or the breakpoint is reached again.

Close: Exits the Debug dialog box.

Help: Displays help information on the
Debug dialog box.

System Debug obtain source file copies of and troubleshoot
BEST++ programs, as well as to access the
following objects in a selected Comfort
Controller: I/O channels (hardware and
software points), time and holiday schedules,
setpoint schedules, runtime and consumable
tables, standard algorithms, and system tables.
The System Debug command provides you
with a window into a Comfort Controller,
and gives you the ability to directly access
and modify a Comfort Controller’s BEST++
programs and objects.

On selecting this command, BEST++ will
display the System Debug dialog box.

 (continued)

217

Command Use this command to

System Debug Dialog Box Options:

Categories:
I/O Channels, Schedules, Setpoints, Data
Collection, Standard algorithms, BEST++
programs, BEST++ sources, System.

Accesses the selected item in the target
Comfort Controller. The Select list will
display each item's name and description.

You can select an item and examine it using
the BEST++ debugger. If you select BEST++
programs, you can also delete all programs by
clicking on Initialize. If you select BEST++
sources, you can obtain a copy of a selected
program's source file by clicking on Upload.
You can also delete a selected or all programs
by clicking on Delete or Initialize. Refer
above to the explanation of the BEST++
Debug command for a description of
debugger operation.

Delete: Removes the selected BEST++
program source from the Comfort Controller.

Upload: Obtains a copy of the selected
BEST++ program source from the Comfort
Controller and displays it at
ComfortWORKS. BEST++ automatically
decompiles the program as it is uploaded, and
displays an editable copy of the program
source in the Programmer's Environment
window. Note that if you have the Options
menu's Delete Template After Download
Command enabled, a copy of the program
source will be unavailable for upload.

Debug: Accesses the BEST++ debugger and
allows you to display configuration or mainte-
nance data or the value of the selected

 (continued)

218

Command Use this command to

System Debug Dialog Box Options:
(continued)

item's associated functions. The Debug dialog
box is displayed. Refer above to the explana-
tion of the Debug command for instructions
on using the Debug dialog box.

Initialize: Deletes all of BEST++ programs in
the Comfort Controller. If a program is
executing when you select Initialize, points
forced by the program remain forced.

Close: Closes the System Debug dialog box.

Help: Displays help information on the
System Debug dialog box.

The table below describes the commands that appear in the Options
menu.

Command Use this command to

Report Warnings display warnings along with the syntax error
messages, which will always be reported,
during compilation. If you use the BEST++
menu’s Make List File command to request a
list file of errors, warnings will also be in-
cluded there. Note that a program containing
warnings will compile and download cor-
rectly. However, the program could operate
improperly. An explanation of errors and
warnings can be found in this manual's
Syntax Error Messages chapter.

Metric indicate whether to display data in metric
engineering units instead of customary US
engineering units. Note that the Debugger's
Function data is not affected by this setting.

Delete Template
After Download delete the BEST++ program template from

the Comfort Controller after downloading.

 (continued)

Options Menu

219

Command Use this command to

This command is intended for use primarily
by Carrier Corporation representatives as a
security measure to prevent access to propri-
etary BEST++ programs.

Note: You are strongly cautioned against
using the Delete Template After Download
command, as deleting a program template
erases the BEST++ program image and
permanently prevents program access. You
will not be permitted to upload or decompile
the program.

Show Units Names display the allowable entries for defining the
engineering units of constants. Refer to
Appendix B of this manual for additional
information on this topic.

Save Settings
On Exit indicate whether to automatically save any

changes you make by using commands on the
Options menu. These saved options will be in
place the next time you launch the BEST++
application. When an option is in effect, a
check mark appears next to the command on
the Options menu.

The table below describes the commands that appear in the Help
menu.

Command Use this command to

Contents display the help table of contents.

Search search for a help topic by typing a keyword.

About display program information, version infor-
mation, and copyright.

Help Menu

220

Index

221

Index

A

ABS 44, 45
Accessing BEST++ Programmer's Environment 10
ACOS 44, 46
ACTIVATE 200
Activating

a program 123
a timer 129

Addition Sign (+) 153
Algorithms 1

interaction with tasks 171
ANALOG_MAINTENANCE 47
AND 44, 49
Application

how to create 25
Arc Cosine 46
Arc Sine 53
Arc Tangent 54
ARRAY 43, 55, 169
ASIN 44, 53
Assigning Variable Names 57
ATAN 44, 54
AUTO 55

B

BEST Menu
BEST++ Debug 22
Compile All 21
Compile Program 27
Decompile Program 21
Download All 22
Download Program 22
Make List File 21
Set Controller Address 20
Show Compiler Window 22
System Debug 22

BEST++ Debug 22, 30, 173
BEST++ Debugger 173
BEST++ features 1
BEST++ Programmer's Environment

accessing 10
BEST++ Debugger 22
compiling

a program 27
all programs 9

debugging programs 9, 173
decompiling a program 30
downloading

a program 29
all programs 9

editing
a program 30
all programs 9

saving
a program 26

setting the controller's address 29
system debugger 22, 173
uploading a program 15
writing programs 9

BPP File Extension 9
BST File Extension 9
Building Environmental Systems Translator (BEST++)

purpose 1
BYE 200

C

CALL 43
Capitalization 38
Case Sensitivity 32, 38
Change 8
CHECK 200
Clipboard 4
Colon 165
Color Display 23
Comfort Controller 4

force priorities 55, 137, 197
Comma 162
Commas

rules for using 40
Commas, rules for using 40
Comparing Two Values 159
Compile All 189
Compile Code Window 27
Compile Program 189
Compiling

a Program 20
Conditional Statement 95
Configuration Variable 88
CONNECT 43, 57

types of
external 57, 58
internal 57, 58

CONNECTing to a
decision 58, 61
decision in a Comfort Controller's function 58
decision within a Comfort Controller's function 66
point by point number 58, 60, 63
point by variable name 58, 59, 62
point's decision by decision name within a Comfort

Controller 65
UT203 FID, 32MP Gateway, or VVT Gateway 64
UT203 FID, 32MP Gateway, or VVT Gateway 58

222

Connecting Variable Names 57
Constants

defining engineering units of 198
Converting FID BEST Syntax 57
COPY 200
Copying

a program 14
an existing folder 13
text 8, 16

COS 44, 69
COSH 44, 70
Cosine 69
COUNTER 43, 71
Counter 119
Counter Control

RESET 119
Creating

application 25
folder 13
program 14
timer 139

Creating Names
arrays 31
counters 31
labels 31
rules for creation 31
steps 31
tasks 31
timers 31
variables 31

Customary US engineering units 23, 26
Cutting Text 8, 16
Cycling Comfort Controller Power 172

D

Day Of the Week 79
Day Of the Year 81
Deactivating a Timer 132
Debug 5, 173
Decompiling 5
Decompiling a Program 30
DECREMENT 43, 73
Decrement a Counter 71
Defining Variable Names 57
DELAY 74
DELETE 200
Deleting

folder 13
program 15
template after download 23
text 16

DIM 43, 76
Disconnecting the Network Service Tool 9

Discrete Devices
turning on or off 140

Displaying
allowable entries for AI and AO display units 24
color on screen 23
Compile Code Window 27
controller address 20
copyright information 24
currently installed software and database version 24
customary US engineering units 23
drive and directory 15
function and configuration parameters 19
help 24
list file 27
logical operators 19
mathematical functions 19
mathematical operators 19
metric engineering units 23
relational operators 19
reserved words 18
syntax 19
syntax error messages 20
warnings 23

Division Sign (/) 149
DOM 43, 77
DOW 43, 80
Downloading a Program 24, 29
DOY 43, 82

E

EDIT 200
Edit Menu

Copy 17
Cut 16
Delete 17
Find 17
Paste 17
Paste Function 18
Replace 17

Editing
a program 24, 30

ELSE (IF... THEN... ELSE... ENDIF) 94
ENDIF (IF... THEN... ELSE... ENDIF) 94
ENDTASK 43, 84
Engineering Units 26, 113

changing from customary US to metric 198
decompiling 199
when to define a constant's unit 198

Equal to Symbol (EQ) 159
Evaluating a Condition 94
Exclusive OR 145
Executing

programs 123

223

statements together 83, 100
task 171

Execution
algorithm 171
multiple tasks 171
single task 171
subroutine 171

EXIT 85
Exiting

BEST++ 15
without making a selection 8

EXP 44, 87
Exponentiation Sign () 148
External CONNECTs

CONNECTing to a
decision in a UT203 FID, 32MP Gateway, or VVT
UT20 64
point by point number 58, 63
point by variable name 58, 62
point's decision by decision name 58
point's decision by decision name in a CC 65
function's decision within a Comfort Controller 58
point's decision within a function 66
UT203 FID, 32MP Gateway, or VVT Gateway 58

F

FID BEST Programmers Environment (PE) Com-
mands 200

File Extensions 9
File Menu

conventions used in dialog boxes 15
Delete Folder 13
Delete Program 15
Exit 15
New Folder 13
New Program 14
Open Folder 13
Open Program 14
Print 15
Print All 15
Remove Program 14
Save Folder 13
Save Folder As ... 13
Save Program 14
Save Program As ... 14

File Menu Dialog Box
Cancel 16
Commands 13
Directory 16
Drive 16
File Name 15
File Name List 15
OK 16

Find 8, 17
FLD File Extension 9, 10
FLOAT_CONFIGURATION 88
Folder 5, 9, 25
Force Priorities 55
forcepri 55, 197
Forcing 55, 197
FRACTION 44, 89

G

GET 200
Global Dictionary 5, 25, 33, 142
GOTO 43, 90, 130
Greater Than or Equal to Sign (> =) 158
Greater Than Sign (>) 157
Grouping Statements 83, 100

H

HALT 43, 91
Help, displaying on-line 19
Help Menu

About 24
Advanced Features 24
Keywords 24
Unit Names 24

Highlighting Text 8, 16
HOUR 43, 92
Hyperbolic Sine 127
Hyperbolic Tangent 136

I

IF... THEN... ELSE... ENDIF... 43, 94
INCREMENT 43, 96
Incrementing a Counter 71
Indirect Assignment 169
INITIALIZE 200
Initializing Variables 34
INPUTFROM 43, 97
Internal CONNECTs

CONNECTing to a
decision 58, 61
point by point number 58, 60
point by variable name 58, 59

Inverting a Logical Condition 107

K

KEEP 200
Keyboard 7
Keywords 24

224

L

Label Names 165
Less Than or Equal to Sign (< =) 155
Less Than Sign (<) 154
Linking Logical Conditions

AND 49
NOT 107
OR 108

Linking Statements 166
LIST 200
LOG 44, 98
LOG10 44, 99
Logical Operators 43, 44, 147

AND 44, 49
definition 44
NOT 44, 107
OR 44
XOR 44, 145

LOOP 84, 100
LOOP... ENDLOOP 43
LOOP...ENDLOOP 84
Lowercase Characters 32, 38
LST File Extension 10

M

Main Menu 10
Make List File 21, 27, 189
Math Functions 43, 44

ABS 44, 45
ACOS 44, 46
ASIN 44, 53
ATAN 44, 54
COS 44, 69
COSH 44, 70
definition 44
EXP 44, 87
FRACTION 44, 89
LOG 44, 98
LOG10 44, 99
PID 44, 110
POWER 44, 112
ROUNDDOWN 121
ROUNDUP 44, 122
SIN 44, 126
SINH 44, 127
SQRT 44, 128
SWITCH 44, 134
TAN 44, 135
TANH 44, 136

Mathematical Assignment 161
Mathematical Operators 147, 150

addition sign (+) 153

division sign (/) 149
exponentiation sign () 148
negative sign (-) 152
subraction sign (-) 151

MAX 101
Memory Space 29
Menu Bar 6
Metric Engineering Units 23, 26
Metric Units Option 198
MIN 102
MINUTE 43, 101
MONTH 43, 102
MOVE 200
Moving the Cursor Within a Dialog Box 8
Multiplication Sign (*) 150

N

Naming a BEST++ Program 113
Negative Sign (-) 152
Network Service Tool

keys for BEST++ 8
Main Menu 10

NOT 44, 107
Not Equal to Sign (< >) 156
Numerical Value of e 86

O

Opening
folder 13
program 8, 14

Options Menu
Color Display 23
Delete Template After Download 23
Metric 23
Report Warnings 23

OR 44, 108
OUTPUTTO 43, 109

P

Parentheses, use of 40, 41, 163
Pasting Highlighted Text 8
PE Commands, comparing FID BEST to BEST++ 200
PE Menu Bar 6, 10
PID 44, 110
POR Delay 172
POWER 44, 112
Power On Reset (POR) 138
PRINT 200
Printing

a program 15
list of program in a folder 8

Priority 137

225

of Comfort Controller forces 197
symbols 161
task execution 137

PROGRAM 113
Program

list line (file names) 15
notes (remarks) 39, 115, 167
size 27
statements 35

Program Control
DELAY 74
ENDTASK 84
EXIT 85, 86
GOTO 90
HALT 91
IF... THEN... ELSE... ENDIF 94
INCREMENT 96
LOOP 84, 100
RELEASE 114
RETURN 120
RUN 123
STEP 130
TASK 137

Proportional, Integral, Devivative Control Loop 110

Q

Question Mark (?) 169
Quitting

a program 15
BEST++ Programmer's Environment 15

R

Raising a Value to a Power 112
Rate at Which Program Runs 138
Reading Values in Other System Elements 97
RECOVER 200
Relational Operators 147

equal to symbol (EQ) 159
greater than or equal to sign (> =) 158
greater than sign (>) 157
less than or equal to sign (< =) 155
less than sign (<) 154
not equal to sign (< >) 156

RELEASE 43, 114
REM 44, 115, 167
REMAIN 117
Remainder 117
Remarks 39, 115, 167
Removing

force 55, 114
program from a folder 14

REPEAT 43, 118, 130

Repeating a Step 118
Replace 17
Report Warnings 23
reschpor 138
reschrat 138
Reserved Word List 18
Reserved Word Name Box 19
Reserved Words 43

ANALOG_MAINTENANCE 43, 47
ARRAY 43, 169
AUTO 43, 55
CALL 43
CONNECT 43, 57
COUNTER 43, 71
DECREMENT 43, 73
DELAY 74
Delay 43
DIM 43, 76
DOM 43, 77
DOW 43, 80
DOY 43, 82
ENDTASK 43, 84
EXIT 43, 85
FLOAT_CONFIGURATION 43, 88
FRACTION 44, 89
GOTO 43, 90
HALT 43, 91
HOUR 43, 92
IF... THEN... ELSE... ENDIF... 43, 94
INCREMENT 43, 96
INPUTFROM 43, 97
LOOP 84, 100
LOOP... ENDLOOP 43
MAX 44, 101
MIN 44, 102
MINUTE 43, 101
MONTH 43, 102
OUTPUTTO 43, 109
POWER 44, 112
PROGRAM 43, 113
RELEASE 43, 114
REM 44, 115, 167
REMAIN 44, 117
REPEAT 43, 118
RESET 44, 119
RETURN 43, 120
RUN 43, 123
SECOND 43, 124
START 44, 129
STEP 43, 130
STOP 44, 132
SUBROUTINE 43, 133

226

TASK 43, 113, 137
TIMER 43, 139
TURNOFF 43, 140
TURNON 43, 140
types of

calendar/clock 43
counter control 43
definition 43
general purpose 44
input/output 43
program control 43
timer control 44

VARIABLE 43, 142
WHEN 43, 143

RESET 44, 119
Resetting a Counter 71
Resetting a Timer or Counter to Zero 119
RETURN 43, 120
Returning

logarithm to base 10 98
maximum of two values 100
minimum of two values 104
natural logarithm of a numeric expression 97

Reversing a Compiled Program 21
ROUNDDOWN 121
Rounding Numbers 121, 122
ROUNDUP 44, 122
Rules for Creating Names 31
RUN 43, 123
Runtime, accumulating 139

S

Saving
folder 13
program 8, 14

Search 8
SECOND 43, 124
Selecting

highlighted text 8
items from PE menu bar 8

Semicolon (;) 166
SEND 200
Set Controller Address 29
Show Compiler Window 22
SIN 44, 126
Sine 126
SINH 44, 127
Space(s), rules for using 39
SQRT 44, 128
Square Root 128
START 44, 129, 132
Starting

task 123

timer 129
Statement, definition 26
Statements

definition 35
entering them into a program 36
indentation 37
linking 166
multiple lines of text 37
purpose 35
separating 36
syntax rules 38

STEP 43, 118, 130
STOP 44, 132
Stopping

subroutine 120
task 86, 91
timer 132

SUBROUTINE 43, 120, 171
Subroutine 133
Subtraction Sign (-) 151
SWITCH 44, 134
Symbols

acceptable 161
colon 165
comma 162
mathematical assignment 161
parentheses 163
question mark 169
semicolon 166
tilde 167

Symbols, acceptable 31
Syntax Error Messages 10, 27, 189
System Debug 22, 30, 180

T

TAN 44, 135
Tangent 135
TANH 44, 136
TASK 43, 113, 137, 171
Task Execution 55, 171
Templates 23
Testing

a condition 94
for inverse of a logical condition 107

THEN (IF... THEN... ELSE... ENDIF) 94, 95
Tilde (~) 39, 115, 167
TIMER 43, 132, 139
Timer 119, 129
Timer Control 129

RESET 119
STOP 132

Troubleshooting by Debugging 173
Truth Tables 44

227

Turning Discrete Devices On and Off 140
TURNOFF 43, 140
TURNON 43, 140

U

Uploading a Program 24
Uppercase Characters 32, 38

V

VARIABLE 43, 142
Variable Names

assigning 57
vartypes 59
Viewing a Program 14

W

Warnings 10, 23
WHEN 43, 143
Writing

notes (remarks) 115
values in other system elements 109

X

XOR 44, 145

228

Reader's
Comments

Fold so that the mailing address is visible, staple closed,
and mail.

Your comments regarding this manual will help us improve future
editions. Please comment on the usefulness and readability of this
manual, suggest additions and deletions, and list specific errors and
omissions.

Document Name: Publication Date:

Usefulness and Readability:

Suggested Additions and Deletions:

Errors and Omissions (Please give page numbers):

Date:
Name:
Title or Position:
Organization:
Address:

Carrier Corporation
Carrier World Headquarters Building

One Carrier Place
Farmington, CT 06034-4015

Attn: CCN Documentation

 808-893 Rev. 7/05

	8/22/12

	8/22/12

